
Pattern Matching in Trees

CHRISTOPH M. H O F F M A N N AND MICHAEL J. O 'DONNELL

Purdue Umversay, West Lafayette, ln&ana

ABSTgACT. Tree pattern matching is an interesting special problem which occurs as a crucial step m a
number of programmmg tasks, for instance, design of interpreters for nonprocedural programming
languages, automatic implementations of abstract data types, code optimization m compilers, symbohc
computation, context searching in structure editors, and automatic theorem provmg. As with the sorting
problem, the variations in requirements and resources for each application seem to preclude a uniform,
umversal solution to the tree-pattern-matching problem. Instead, a collection of well-analyzed techmques,
from which specific applications may be selected and adapted, should be sought. Five new techniques for
tree pattern matching are presented, analyzed for time and space complexity, and compared with
previously known methods. Particularly important are applications where the same patterns are matched
against many subjects and where a subject may be modified incrementally Therefore, methods which
spend some tune preprocessmg patterns in order to improve the actual matching time are included

Categories and SubJect Descriptors' F.2.2 [Analysis of Algorithms and Problem Complexity]' Nonnu-
tactical Algorithms and Problems--pattern matchmg, G 2 2 [Discrete Mathematics]: Graph Theory--trees

General Terms Algorithms, Theory

Additional Key Words and Phrases. incremental pattern matching, bottom-up matching, top-down
matching, subtree replacement systems, interpreter generation, theorem proving

1. Introduction

M a n y compu t ing techniques involve s impl i fy ing express ions (trees) by r epea ted ly
rep lac ing special types o f subexpress ions (subtrees) accord ing to a set o f r ep lacemen t
rules. F o r example ,

(1) H o f f m a n n and O ' D o n n e l l [14] show how tree rep lacements m a y be used in
au toma t i ca l ly genera ted in terpre ters for n o n p r o c e d u r a l p r o g r a m m i n g languages. The
def in ing equa t ions for the p r o g r a m m i n g l anguage are t a k e n as the r ep l acemen t rules.
A n in te rpre te r m a y then process an inpu t express ion by rep lac ing subexpress ions
accord ing to the given rules unt i l no more r ep lacement s a re possible. In te rpre te rs
m a y be gene ra t ed which are abso lu te ly fa i thful to the semant ics o f the l anguage as
given by the def in ing equat ions . The t r ee - rep lacement a p p r o a c h is very convenien t
for p roduc ing in terpre ters for exist ing l anguages such as L I S P and L U C I D or for
i m p lemen t ing expe r imen ta l languages . Elsewhere, the mer i t s o f the l anguage o f
equa t ions as a p r o g r a m m i n g l anguage in its own r ight are e x a m i n e d [15].

(2) G u t t a g et al. [12] and W a n d [341 suggest that def in ing equa t ions m a y be t rea ted
as tree r ep lacement rules to y ie ld direct imp lemen ta t i ons o f abs t rac t da t a types.
Gut tag et al. [13] describe a working system based on this idea, as does Goguen [11].

This work was supported m part by the National Science Foundation under Grant MCS 78-01812.
Authors' address" Department of Computer Science, Purdue Umverslty, West Lafayette, IN 47907
Permission to copy without fee all or part of this material is granted provided that the copies are not made
or distributed for direct commercial advantage, the ACM copyright notice and the title of the publication
and its date appear, and notice is given that copying is by permission of the Associauon for Computing
Machinery To copy otherwise, or to republish, reqmres a fee and/or specific permission.

© 1982 ACM 0004-5411/82/0100-0068 $00 75

Journal of the Assoclallon for Computing Machinery, Vol 29, No I, January 1982, pp 68-95

Pattern Matching in Trees 69

Such a system does not differ in essence from the interpreters or equational programs
in (1) but in this case would be embedded into a procedural language as subroutine.

(3) Intermediate code produced by a compiler may be represented by trees.
Certain types of code optimizations, for example, the ehmination of redun-
dant operations and constant propagation, may be viewed as replacement rules
[10, 16, 331.

(4) In [7] Collins represents algebraic terms as trees and formulates symbolic
computation as tree replacements. The replacement rules formalize operations such
as differentiation and certain algebraic simplifications.

(5) One approach to the automatic proving of equational theorems is to treat a set
of equational axioms as replacement rules and transform one side of the equation to
be proved into the other by a sequence of tree replacements. Knuth and Bendix [20]
discuss some of the cases in which tree replacements yield efficient theorem provers.
Most studies of equational theorem proving, such as [9, 22, 25, 31], have not used the
replacement system approach. Chew [6] has recently developed an algorithm com-
bining replacement systems with the methods of Nelson and Oppen [25].

Many of the theoretical properties of tree replacement systems have been studied
in [3a, 11, 23, 26, 30]. In this paper we develop theoretically and practically efficient
algorithms for one of the key technical issues in implementing replacement systems.

An implementation of a tree replacement system requires practical solutions for
the following:

(a) a method for finding subtrees which may be replaced;
(b) a way of choosing the next replacement to be performed;
(c) a way of actually replacing the subtree.

Part (c) is an easy programming problem; (b) is a question which is quite complicated
m its theoretical effects. It has been treated abstractly in [26] and algorithmically in
[14]. Part (a) is the subject of this paper.

A large part of the overhead in implementing tree replacements comes from the
repeated searching for the next subtree to be replaced. This is essentially a tree-
pattern-matching problem. We believe that good solutions to the problem of tree
pattern matching are a prerequisite for making implementations based on tree
replacements competitive in efficiency with ad hoc methods, especially in the realm
of interpreters for nonprocedural languages.

Tree pattern matching is analogous to the problem of pattern matching in strings
studied in [1, 4, 21]. We consider two essentially different ways of extending the
Knuth-Morris-Pratt string-matching algorithm to tree patterns, each with several
variations.

One may view first-order unification as a tree-pattern-matching problem [3, 28,
29]. However, first-order umfication differs from the tree pattern matching considered
here in that a pattern is matched against the entire subject tree and not against proper
subtrees as well. Pattern matching in our sense has been studied in [18, 23, 24, 27].
With the exception of [23], these papers examine the problem without considering
the specific requirements of subtree replacement systems. Karp et al. [18] give an
algorithm which finds all matches of a pattern tree to subtrees of a subject. By
preprocessing the pattern(s) involved we get more efficient methods. Recently,
Overmars and van Leeuwen [27] have studied tree pattern matching, but with a
different class of trees. They discovered independently many of the techniques we
develop in Section 8, and their fastest algorithm has a performance equal to our

70 c . M . HOFFMANN AND M. J. O 'DONNELL

Algorithm D. We discuss their results and the relationship to our work in Section 9.
Kron's work [23] is related to the bottom-up techniques of Sections 3 and 4. We
discuss the details at the end of Section 4.

In applications of tree replacements the same set of rules is typically used many
times. Preprocessing of the rules is advantageous if it speeds up their application.
Each replacement causes a local change in the subject tree. So our pattern-matching
techniques should be able to respond incrementally to local changes in the subject to
avoid repeated rescanning of the entire tree. For the sake of a simple presentation we
discuss each algorithm in terms of a static subject first and then introduce adaptations
to handle changing subjects.

In Section 2 we precisely define the matching problem and our criteria for a good
solution. The remainder of the paper divides into two parts, corresponding to the two
basic approaches we give. Sections 3-7 develop the bottom-up approach to pattern
matching. Here we match in a subject tree by traversing it from the leaves to the
root. This method is a significant generalization of the Knuth-Morris-Pratt string-
matching algorithm. In Sections 8 and 9 we give our second approach, matching top
down by traversing the subject root to leaves. While the bottom-up method gener-
alizes string matching, the top-down method reduces tree matching to a string-
matching problem.

The bottom-up method is characterized by more expensive preprocessing but faster
matching and a better response to local changes. It is developed from the notion of
match sets--sets of subpatterns which match at a particular tree node. The basic
matching algorithm is introduced m Section 3. Properties of match sets are studied
in Section 4. Since it turns out that certain tree patterns have exponentially many
different match sets, which would lead to an exponential preprocessing algorithm,
we introduce in Section 5 a restriction on tree patterns which allows efficient
preprocessing algorithms. Section 6 gives the preprocessing algorithm and discusses
its relationship with the preprocessing algorithms in [1, 21]. In Section 7 we sketch a
better preprocessing algorithm for binary tree patterns.

Sections 8 and 9 give our top-down algorithm and discuss possible improvements.
These algorithms have better preprocessing times than the bottom-up method, but
the matching times and update behavior are inferior to the bottom-up method. Tree
patterns are reduced to strings which are matched along paths in the subject, as in
[18]. The preprocessing for this technique is little more than the preprocessing
algorithm for string matching [1]. The basic idea of the top-down method lies in the
use of counters for coordinating the matches of different path strings. This counting
also turns out to be the limiting factor of the algorithm and is responsible for the
worst-case bound. We can improve this bound on machines with bit-string operations,
as indicated in SecUon 9.

For the restricted class of tree patterns introduced in Section 5 we have prepro-
cessing algorithms which require

O(patsize 2 + patsize "an~ × ht)

steps. Here patsize is the sum of the pattern sizes, ht the height of a specific tree
which has to be constructed as part of preprocessing, and rank the highest rank in
the alphabet. In the worst case ht may be as big as patsize. The actual match, bottom
up, requires O(subsize + match) time, where subsize is the size of the subject tree and
match is the number of matches found. For binary alphabets we have a preprocessing
algorithm which requires only O(patsue × ht z) steps when coupled with a modified
bottom up matching algorithm requiring

O(subsize × ht + match).

Pattern Matchingin Trees 71

a /\b
b / \b

Figure 1

For top-down matching we have an O(patsize) preprocessing algorithm. Here we
need no restrictions on the tree patterns. The matching requires

O(subsize × suf × patno)

steps, where suf is a quantity depending on the structure of the pattern suffixes (at
most equal to the maximum height of a pattern) and patno is the number of tree
patterns to be matched. For machines with bit-string operations we can, within the
same time bound for preprocessing, match using a different technique in only
O(subsize × patno) steps. I f each pattern has a height not exceeding the number of
bits in a machine word, then this algorithm is of practical importance.

In Section 10 we discuss other possibilities of bot tom-up tree pattern matching on
machines with bit-string operations, and a trade-off principle for matching time
versus preprocessing time and space.

2. The Tree-Matching Problem

We are given a finite ranked alphabet Z of function symbols, including constants as
nullary functions. S denotes the set of Z-terms, formally defined as follows.

Definition 2.1
(i) For all b in Z of rank 0, b is a Z-term.

(ii) I f a is a symbol of rank q in]g, then a(tl tq) is a Z- term provided each of
the t~ is.

(iii) Nothing else is a Z-term.

We view Z-terms as labeled ordered trees. Thus the term a(a(b, b), b) is the tree of
Figure 1. Note that the trees a(a(b, b), b) and a(b, a(b, b)) are considered to be
different. In the following we use "Z-tree" and "Z- term" interchangeably.

We are also given a special nullary symbol v, not in Z, to serve as placeholder for
any Z-tree. We defme the set of Z U {v}-terms just as]g-terms but add to (i) that v
is a Y. t_J {v}-term. So denotes the set of Z U {v}-terms.

Definition 2.2. A tree pattern is any term in So. I f b(tl, . . . , tq) is a term, then
define son,(b(tl tq)) to be t~ for 1 _< i <_ q.

We now explain how tree patterns are to be matched in Z-trees.

Definition 2.3. A pattern p in So with k occurrences of the symbol v matches a
subject tree t in S at node n if there exist]g-trees tl th in S (not necessardy the
same) such that the Z-tree p ' , obtained from p by substituting t, for the i th occurrence
of v in p, is equal to the subtree of t rooted at n.

Example 2.1. Consider the pa t t e rnp = a(a(b, v), v), with two occurrences of the
symbol v, and the Y~-tree t = a(a(b, c), a(a(b, b), b)). T h e n p matches t at the two
nodes marked in Figure 2. For the match at the root, the trees tl and t2 to be
substituted inp are tl = c and t2 = a(a(b, b), b). For the match at the marked interior
node we have tl = b and t2 = b. []

We wish to solve a matching problem in which we are given a finite set of patterns
p~ pk from So and a subject tree t from S and are asked to identify in t every
node at which any of the p, match.

72

FIG 2. (a) SubJect tree. (b) Pattern.

C. M. HOFFMANN AND M. J. O'DONNELL

(a) a* (b) a / \ a/\,
a a* b / \v

b/\b

Definition 2.4 (The Matching Problem). A matching problem consists of a finite
set of patterns pl pk in So and a subject tree t in S. A solution to a matching
problem is a list of all the pairs (n, i), where n is a node in t and p, matches at n.

Our definition is motivated principally by algorithmic problems arising in the
implementation of subtree replacement systems. Allowing different substitutions for
different occurrences of v is equivalent to using a different variable symbol at each
occurrence. This restriction is motivated by theoretical problems which arise when
repeated variables are permitted in the specification of the replacement axioms [26,
Sec. VII].

Note that So contains S as subset. Thus every E-tree is also a pattern. We develop
our results assuming patterns contain at least one occurrence of v, since patterns
without variable occurrences are uninteresting from a practical viewpoint. This
assumpuon does not limit our results.

Our matching problem is in some ways more specific, and in some ways more
general, than first-order unification. Our use of v corresponds to allowing terms with
nonrepeated variables as patterns, while in first-order unification repeated variables
are allowed and variables may also appear in the subject. On the other hand, in
unification only two trees are matched against each other, and only at the root,
whereas we match any number of patterns anywhere in the subject tree.

Definition 2.5. The size of a tree is the total number of subtrees (equivalently,
nodes) in it. The size of a forest is the sum of the sizes of all trees in it. The height of
a tree is the number of edges in a longest path from the root to a leaf of the tree.

We are especially interested in applications in which the set of patterns remains
fixed and is to be matched against a sequence of subject trees. We therefore consider
preprocessing the tree patterns and distinguish preprocessing time, involving opera-
tions on the patterns independent of any subject tree, and matching time, involving
all subject dependent operations. Minimizing matching time is the first priority.
Preprocessing time is then minimized with respect to a fixed process for matching.
Trade-offs between preprocessing time and matching time are considered if the
improvement in preprocessing is dramatic and the degradation in matching is small.
We also consider the space requirements in preprocessing and matching.

We are especially interested in algorithms which may deafly be adapted to
assimilate local changes to the subject without rescanning the entire tree. For bottom-
up matching we achieve linear matching times, but preprocessing time may be
exponential. To keep bottom-up preprocessing time polynomial, we need some
additional constraints on patterns. For top-down matching we lower the preprocess-
ing time to linear, with no restrictions on patterns, at the cost of a slight increase in
matching time. The bottom-up method adapts more easily to changes in the subject.

For the remainder of this paper, complexities will be expressed in terms of

patno: the number of different patterns involved
patsize: the size of the pattern forest
subsize: the size of the subject tree
sym: the number of symbols in the alphabet 21

Pattern Matching in Trees 73

rank: the highest rank (arity) of any symbol in 1~
match: the number of matches which are found

All suggested methods for tree matching should be compared to the naive algorithm
(based on a simple form of unification), which merely tries every pattern at every
position in the subject tree. The naive algorithm does no preprocessing but takes
O(/oatsize x subsize) matching time.

3. The Bottom-Up Matching Algorithm

The key idea of the bottom-up matching algorithm is to find, at each point in the
subject tree, all patterns and all parts of patterns which match at this point. Let n be
a node in the subject labeled with the q-ary symbol b, and suppose we wish to
compute the set M of all those pattern subtrees other than v which match at n in the
sense of Definition 2.3. (Since v matches anywhere, we always have a match of v.)
Suppose we have already computed such sets for each of the sons of n, and call these
sets, from left to right, M1 Mq. Then M contains v plus exactly those pattern
subtrees b(tl tq) such that t, is in M , for 1 _< i _< q. Therefore we could compute
M by forming trees b(6 tq) for all combinations (t l , . . . , tq), where the t~ are
chosen from M,, and then asking whether each candidate for membership in M is a
subpattern. Once we have assigned these sets to each node in the subject tree, we
have essentially solved the matching problem, since each match is signaled by the
presence of a complete pattern in some set.

Note that there can be only finitely many such sets M, because both Y. and the set
of subpatterns are l'mite. Thus we could/orecom/oute these sets, code them by some
enumeration, and then construct tables. Given a node symbol b and the codes of the
M , these tables give the code for M. In the case of a q-ary symbol b, we would have
a q-dimensional matrix for that symbol.

Given such tables, the matching algorithm becomes trivial: Traverse the subject
tree in postorder and assign to each node n the code c representing the set of partial
matches at n as discussed. The tables consist of arrays, one for each alphabet symbol.
If node n is labeled with the q-ary symbol b, then the q-dimensional array for b is
used. The code c at n is the value indexed by the tuple (ct cq) where c, is the
code assigned to the ith son of n (from the left). If the set represented by c contains
the pattern/o, then the pair (n, i) is added to the solution.

The matching time of this algorithm is clearly O(subsize) for computing all codes
plus O(match) for listing the solution. The constant of linearity involves one array
reference for computing the codes, a single test to determine whether a complete
pattern match is present, plus the overhead for the postorder traversal. Note that the
codes may be assigned so that all codes indicating matches are contiguous. The space
requirements depend on the table size and are discussed in Section 4.

Example 3. I. Consider a matching problem in which the patterns

/Ol = a(a(v, v), b) and /o2 = a(b, v)

are to be matched. Assume the alphabet 1~ is {a, b, c}, where a is binary and b and
c are nullary symbols. For reasons to be explained later, of the thirty-two possible
sets of pattern subtrees only the following five can arise as result of matching:

Set 1 = (v},
Set 2 = {b, v),
Set 3 = (a(v, v), v},
Set 4 = (a(b, v), a(v, v), v),
Set 5 - (a(a(v, v), b), a(v, v), v).

74

Figure 3

C. M. HOFFMANN AND M.

Table for node label a.

Right son

Left son 1 2 3 4 5

1 3 3 3 3 3
2 4 4 4 4 4
3 3 5 3 3 3
4 3 5 3 3 3
5 3 5 3 3 3

Table for node label b' 2
Table for node label c 1

a3

Figure 4

J. O'DONNELL

Thus, assigning a 4 to some node n of a subject would indicate that each of the
members of Set 4 matches at n. In particular, pz matches. Assigning 5 implies a match
of pl .

Figure 3 shows the tables for a, b, and c. For instance, the entry at (3, 2) in the
table for a is 5, because at the left son we have a match of both a(v, v) and v, and at
the right son of b and of v. For the nullary symbols b and c the tables are
0-dimensional, consisting of one entry each.

Figure 4 shows the complete assignment of codes when using the bot tom-up
algorithm with these tables. Note that p l matches at the node with code 5 and p2 at
the node with code 4. []

There is some similarity between bot tom-up matching and formal parsing methods
such as LR(k) parsing. In both cases a finite number of possible configurations are
precomputed, and tables are formed to drive the pars ing/matching process. As with
LR(k) parsing, our tables will sometimes be very large, but we isolate a significant
class of problems in which the table size is kept small.

When a local change is made to a subject tree, matching codes must be recomputed
for the changed portion and some ancestors of the changed portion. In Section 4 we
see that the number of ancestors whose codes must be recomputed is bounded by the
largest height of a pattern. Note that in these ancestors new matches could appear or
old matches disappear. Thus it seems intuitively unlikely that any method could
update with less recomputation.

4. Pattern Relations and Match Sets

We now turn to studying the sets o f partial matches used in the bot tom-up matching
algorithm of Section 3. We begin by precisely defining these sets and deriving
properties which we will later exploit in designing good preprocessing algorithms.

Definition 4.1. Let F = (p l pk} be a set o f patterns in Sv and PF the set of
all subtrees of the p,. A subset M of PF is a match set for F if there exists a tree t in
S such that every pattern in M matches t at the root and every pattern m PF - M
does not match t at the root.

Pattern Matching in Trees 75

Note that if v is in PF, then v is in every match set. Observe also that the concept
of match sets depends on the pattern forest F.

Example 4.1. Consider the pattern forest F = {p,, p2}, wherep, andp2 are as in
Example 3.1. Then the set M = {a(b, v), a(v, v), v} is a match set because of the tree
a(b, c). However, M ' = {a(b, v), v} is not a match set, because a match of a(b, v)
implies a match ofa(v, v) at the same node. []

Observe that the set of all possible match sets contains all sets which the bottom-
up matching algorithm could assign (in encoded form) in any subject tree, given the
pattern forest F.

Given F, let Match(t) denote the match set which must be assigned at the root of
the subject tree t. PF is the set of all pattern subtrees from F. We can now formally
state the two properties on which the bottom-up matching algorithm is based.

Definition 4.2

(1) If a is a nullary symbol, then

_-~{a 'v} if a is in PF,
Match(a)

t {v} otherwise.

(2) If a is q-ary, a > 0, then

Match(a(t, , tq)) - - { v) t_J {p'lp' has root a and is in PF, and for
1 _ j _ q, sonj(p) is in Match(6)}.

Note that because of (2), Match(t) does not depend on any node in t whose distance
from the root exceeds the maximum height of a pattern. Because of this and the
manner in which codes are assigned, the bottom-up matching algorithm responds
well to local changes in a subject tree. See [15] for details.

In principle, the required enumeration of sets and tables may be generated by a
simple closure strategy which starts with Match(a) for all nullary symbols a and
repeatedly closes under the operation (2) of Definition 4.2. Such an algorithm would
require

O(set (rand+l) × sym x patsize)

time, where set is the number of distinct match sets generated. The table size would
be O(set rank x sym). In order to improve this time limit and to bound the size of set,
which could be as bad as 0(2 pat), we need to understand certain relations between
patterns and members of match sets. We define the following relations on tree
patterns.

Definition 4.3. Let p and p ' be patterns in So. Then p is inconsistent with p '
(written p U p') if there is no subject tree t in S with both p and p' in Match(t). p and
p ' are independent (written p ~ p) if there are trees tl, t2, t3 in S such that p is in
Match(h), p ' is not in Match(6), p is not in Match(t2), p ' is in Match(t2), and p and
p ' are in Match(t3). p subsumes p ' (p >_ p') if, for all t in S, p in Match(t) implies
that p ' is in Match(t). p strictly subsumes p ' (p > p ') i fp _ p ' andp # p ' . p < p ' iff
p ' > p .

Example 4.2. a(b, v)lla(c, v), since b and c cannot both be matched in the
same position, a(b, v) - a(v, c), since a(b, v) in Match(a(b, b)), a(v, c) not in
Match(a(b, b)); a(b, v) not in Match(a(c, c)), a(v, c) in Match(a(c, c)); a(b, v) in
Match(a(b, c)), a(v, c) in Match(a(b, c)). Finally, a(b, v) > a(v, v). []

76

Figure 5

C. M. HOFFMANN AND M. J. O 'DONNELL

p2---._...._ ~ p p4 p5 pe

Given distinct patterns p and p', exactly one of the relations]l, ~, >, and < must
hold between p and p ' . The elementary properties of the three relations are summa-
rized below. Note that in the absence of variables distinct patterns must be incon-
sistent.

PROPOSITION 4.1. For trees pa, p2, p3 in Sv:

(a) p~ > pz and pz > p3 implies p~ > p3;
(b) p~ [Ip2 iffp2 Ilpx;
(c) p, ~ p2 iff p2 ~ pl;
(d) pl liP2 and p3 > p2 implies pl [[p3;
(e) p l ~ p2 and p2 > p3 implies px ~ p3 or pl > p3.

Recall that M ' of Example 4.1 is not a match set because a(b, v) subsumes a(v, v).
The inclusion of one pattern (e.g., a(v, v)) in M may be the consequence of the
presence of another pattern which subsumes it (e.g., a(b, v)). Therefore, there may be
a subset of patterns in M which completely determines M. We partition each match
set M into a set M0 of pairwise independent trees and a set M~ of trees subsumed by
some tree in Mo. Mo is called the base of M.

PROPOSITION 4.2. Given a patternforest F and match set M for F, there is a unique
partition of M into sets Mo and M~ such that for distinct pl, p2 in Mo, pa ~ p2 holds, and
for each p ' in M~ there is a p in Mo such that p > p'.

Observe that different match sets must have different base sets, owing to Proposi-
tion 4.1a. Thus we may represent match sets by their base sets.

Definition 4.4. Given a pattern forest F, the independence graph GI of F is as
follows: The vertices of GI are distinct trees in PF. There is an undirected edge
between p and p ' iff p ~ p ' .

Example 4.3. Consider the pattern forest F = {p~, p2, p3}, where p~ ffi
a(b(b(v)), v), pz = a(b(v), b(v)), and pa = a(v, b(b(v))). There are three additional
trees in PF: p4 = b(b(v)),p5 = b(v), and/ '6 = v. Since the trees pl, p2, p3 are pairwise
independent, whereas no other tree pairs are, the independence graph G~ of F is
as shown in Figure 5, with a connected component p,, p2, p3 and three isolated
points. []

From the independence graph we can derive an upper bound on the number of
possible match sets of a given pattern forest.

THEOREM 4.3. The number of possible match sets o f a pattern forest F is at most
the number of cliques in the independence graph Gi of F, counting all subcliques,
including the trivtal ones.

This theorem follows easily from Proposition 4.2. To illustrate it, consider F of
Example 4.3. The theorem would limit the number of match sets of F to ten, for G~
has six trivial cliques, three cliques of size 2, and one clique of size 3. We would thus
expect six match sets w~th a base set of a singleton, three match sets with base sets
consisting of two trees each, and one match set with a base set of three elements.
However, in this example there is no match set with the base {p,, p3}, since matching

Pattern Matching in Trees 77

both pl and p3 at the root implies that p2 matches at the root as well. Thus Theorem
4.3 gives an upper bound only. For deriving exact limits we would need to introduce
other structural properties and analyze relations between more than two patterns.

For certain pattern forests the graphs GI could be such that the number of cliques
grows exponentially with the number of subtrees in F and hence exponentially with
the size of F. In such cases the number of distinct match sets may also grow
exponentially.

THEOREM 4.4. There are classes of pattern forests for which the number of distinct
match sets grows exponentially with the size of the forest.

PROOF. We define a class of balanced binary treesp~, 0 _ i, 0 _ j _< 2 ~, of height
i, with all interior nodes labeled a. In p j, all leaves are labeled v except the j t h leaf
from the left, which is labeled b. For j -~ 0, all leaves are labeled v.

pO= v,
pO= b,

pj+~ = a(p~, p~), 0 <_j <_ 2',
p~+~ = a(p~, p~-z,), 2' < j ~ 2 ~+1.

Define the pattern forest Fn = (P,"l 1 <_ i ___ 2n}. The size ofF,, is O(2n). Furthermore,
p,~ ~ p~' for distinct nonzero values o f t and j. Now consider sets Q of integers
between 1 and 2 n, and define for each such set Q a balanced binary tree Po of height
n with all interior nodes labeled a and such that the ith leaf from the left is labeled
b if i is in Q, c otherwise. Then p," matches Po at the root iff i is in Q. There are2 zn
such sets Q; thus there must be at least as many different match sets. []

As a consequence of Theorem 4.4, a preprocessing algorithm based on computing
tables indexed by match sets to drive the bottom-up matching algorithm must be
impractical in certain cases. Since independence among subpatterns in a forest is
responsible for a possible exponential growth of the number of match sets, we
conclude the section with a necessary condition for independence based on the
structure of patterns.

PROPOSITION 4.5. Let p, p ' be independent patterns. Then p contains disjoint
nd t 2, in corresponding positions, subtrees ta and t2 and p ' contains disjoint subtrees t ~ a '

such that t~ > t'~ and t'z < t2.

PROOF. Since v and nullary symbols in corresponding positions cannot be inde-
pendent of other patterns, we may assume that

p = a(pl pq),
p ' = a(p'~ p'q).

The proof is by induction on the height ofp.

Basis. If p has height 1, then the p, have height O, thus are nullary symbols or v,
and thus, for l <_ i <_ q, p, >_ p" or p[>_ p,. If, for all i, p, ~ p[(p" > p,), then
p _> p ' (p ' ~ p). But p ~ p ' by assumption, and thus we can find the required trees
among p, and p ' .

Induction Steps. Assume that the proposition holds for al lp of height less than h,
and assume that p has height h. Surely p, H P" cannot hold; otherwise p and p ' would
be inconsistent. If there is some i such that p, ~ p' , then apply the induction
hypothesis top, andp ' . Otherwise, for all t, p, >_ p" orp" >_ p,, and the argument of
the induction basis completes the proof. []

78 C. M. HOFFMANN AND M. J. O'DONNELL

Note that mutual subsumption, in opposite directions, of disjoint subtrees is
necessary but not sufficient for independence, since it does not rule out the possibility
that other subtrees are inconsistent. For example, a(b, v, c) and a(v, b, d) are
inconsistent, yet there are disjoint subtree pairs satisfying the "only if" condition of
Proposition 4.5.

Proposition 4.5 is used when testing the restrictions imposed on tree patterns in the
next section.

We have recently learned that the idea of bottom-up tree pattern matching was
discovered independently by Kron [23]. He calls match sets "batches" and defines
the relations >, II, - (which he calls "more specific than," "not overlapping," and
"intersecting," respectively) equivalently by containment and intersection properties
of the sets of 52-terms which two patterns match at the root.

He matches patterns in a subject tree using an automaton as well. Instead of using
matrices as tables, however, he computes the match set to be assigned to node n with
q sons by a subautomaton which, m q transition steps reading the match set codes of
the sons, determines the code for the new match set. There is one subautomaton per
alphabet symbol. As a result, his match time is O(subsize). One can visualize each
subautomaton as a trie encoding of one of our matrices. Depending on the pattern
structure, this leads to smaller space requirements in certain cases.

The preprocessing of Kron is essentially the method sketched in the paragraphs
following Definition 4.2. Because of Theorem 4.4, this preprocessing takes time
exponential in the pattern size in the worst case. As Kron tells us, he was aware of
this, but it was not a concern of his research in [23]. We are going further and
analyzing match sets seeking a definition of a subclass of tree patterns with polyno-
mial preprocessing time. We give such a definition in the following section.

Preprocessing in Kron's sense has been used in practical situations by Wilhelm
[10]. Since this work seems to accomplish practically viable preprocessing times, we
conclude that the exponential worst case of bottom-up matching does not arise
frequently in these applications.

5. Simple Pattern Forests
Because of the exponential growth of the number of match sets for certain pattern
forests (Theorem 4.4), we wish to restrict patterns when generating tables to drive the
bottom-up matching algorithm of Section 3. Theorem 4.3 suggests disallowing
independence among pattern subtrees. This restriction is not as drasUc as it might
seem and has not seriously hindered us when generating interpreters for LISP,
LUCID, and the Combinator Calculus using these techniques [14].

Definition 5.1. A pattern forest F is simple if it contains no independent subtrees.

For simple forests, the independence graph has no edges; hence, by Theorem 4.3,
the number of distinct match sets is at most the size of the forest. Furthermore, simple
forests have a number of useful properties which can be exploited in the design of
efficient matching algorithms.

Definition 5.2. If F is a pattern forest, and p, p ' are subpatterns in PF, then p
immediately subsumes p', p >, p', i f fp > p' and there is no other subpattern p" in
PF such that p > p" and p" > p'. Immediate subsumption is the transitive reducUon
of subsumption on the set of all subpatterns of F.

Defimtion 5.3. The immediate subsumption graph Gs of the forest F has as vertices
all distinct subpatterns in F. There is a directed edge from p to p ' iff p >, p'. In
general, Gs is a directed acycllc graph with v as the only leaf.

Pattern Matching in Trees

a(a(v, v), b) a(b, v)

FIG 6 The immediate subsumptlon graph of F.

79

LEMMA 5.1. The immediate subsumption graph Gs of a simple forest F is an inverted
tree with v as root.

PROOF. Let p, p', and p" be distinct subtrees in F, and assume that p subsumes
both p ' and p ", but neither p > p" nor p" > p'. Since p subsumes both trees, p ' II p"
is impossible (Proposition 4.1d); hence p ' and p" must be independent. But then F
cannot be simple. Hence either p' > p" or p" > p'. []

Observe that for simple forests, the base set Mo of any match set must be a
singleton. Using Lemma 5.1 and Proposition 4.2, we thus easily obtain

THEOREM 5.2. Let F be a ample forest and M any match set for F with base set
{p}. Then M consists prectsely of the trees encountered on the path f rom p to v in Gs.

This theorem is the central result for simple forests. It frees us from having to
construct explicitly the individual match sets, for Gs provides them at once along
with their structure and interrelation. We conclude the section with an example
illustrating Theorem 5.2, and a discussion of the relationship between Gs and the
failure function f constructed in the algorithm for string pattern matching in [1, 21].

Example 5.1. The pattern forest F = {a(a(v, v), b), a(b, v)} is simple, since there
are no independent trees or subtrees. Its immediate subsumption relation is

b >, v, a(v, v) >~ v,
a(b, v) >~ a(v, v), a(a(v, v), b) >~ a(v, v),

which has the graph Gs shown in Figure 6. From this graph we then obtain as
possible match sets the five sets of Example 3.1:

{v},
{b, v},
{a(v, v), v},
{a(b, v), a(v, v), v},
(a(a(v, v), b), a(v, v), v}.

Note the correspondence of these sets to the paths in Gs. []

There is a connection between the immediate subsumption graph Gs and the
failure function fu sed in string-pattern-matching algorithms in [1, 21]. This connec-
tion is observed by visualizing a string pattern ala2 .. • am as the nonbranching tree
am(. • • a2(al(v))...). Note the reversal of the character sequence. The addition of v as
a leaf permits us to conceptualize the a, as symbols of arity 1 and permits sliding the
nonbranching tree in the subject. Matching this pattern in the subject blb2 . . . bn
is now equivalent to matching the nonbranching tree pattern in the tree
bn(.. , b2(b~(c)).. .), where c is a new nullary symbol. Having translated the string-
matching problem into a tree-matching problem in this way, we now observe that Gs
is just the graph of the failure function f constructed for the original string problem
by the algorithms in [1, 21]. To observe this, note that a subtree corresponds to a

80 C. M. HOFFMANN AND M. J. O'DONNELL

pattern prefix, and that p > p ' iff p ' is a pattern prefix which matches, as suffix, in
the pattern prefix p. Hence p >, p ' iff p ' is the longest proper prefix of p which
matches, as suffix, in the prefix p, which is just the definition of the failure function.

Note also that because of Proposition 4.5, pattern forests derived from string
patterns must be simple, because nonbranching trees cannot have disjoint subtrees.
Hence there is no counterpart in string matching to the exponential explosion of
match sets, which can occur for nonsimple forests in tree matching.

6. Table Construction for Simple Forests

For a simple pattern forest F, the tables to drive the bottom-up algorithm of Section
3 may be constructed in two steps. First, construct the subsumption graph (~s whose
vertices are the trees in PF. (~s has a directed edge fromp top ' i f fp _ p'. Observe
that this is equivalent to finding all match sets which can occur when matching in
any subject. Then, for each alphabet symbol a of arity m, we use Gs to construct a
table Ta such that Ta[p~ pm] is the match-set code which should be assigned to
any node labeled a at whose sons we have assigned the match-set codes pl to pm
from left to right, respectively.

We fred it convenient to represent a match set M by its base set tree, that is, by the
largest (in the sense of >) tree in M. This is a reasonable choice since, by Proposition
4.2 and Theorem 5.2, the largest tree in M completely determines M. The advantages
of this coding is that we can now define the entry Ta[pl pro] as the largest tree
in PF subsumed by a(p1, . . . , pro), because of observation (2) below. Note that the
tree a(pl pro) need not occur in PF.

To construct (~s, observe that for distinct patterns p, p',

(1) I fp > p', then height(p) _ height(p').
(2) Letp ffi a(p~ pro). Thenp > p ' iffeitherp' = v orp ' = a(pi p'm), where

p~_>p~for l<_j<_m.

So we may process patterns in order of increasing height and compare each pattern
to all patterns of no greater height using observation (2). Since the subpatterns p, and
p" in (2) above are of strictly smaller height than p and p', respectively, p~ _ p~ has
already been checked by the time p is compared to p'.

Algorithm A

Input: Simple pattern forest F.

Output: Subsumpuon graph Gs for F.

Method:

I. List the trees m PF by increasing height
2. Imtiahze (~s to the graph with vemces PF and no edges.
3. For each p = a(p t pro), m >_ O, of height h, by increasing order of height, do
4. for each p ' m PF of height _< h do
5. I fp ' = v or

p ' = a (p i p ') where, for 1 <__ l <_ m, p, ~ p" Is m Gs,
then

6 Addp--~ p ' to Gs.

For the analysis of Algorithm A, observe that step 1 requires O(patsize) time using
bucketsort. Steps 3-6 require O(patsize 2 x rank) steps, assuming that Gs is stored as
an adjacency matrix, so that checking whether p~ --, pJ requires constant time. The
space complexity is dominated by the O(patsize 2) adjacency matrix. Thus Algorithm
A requires O(patsize 2 × rank) steps and O(patsize 2) space.

Pattern Matching in Trees 81

To generate the table T~, recall that for the m-ary symbol a and trees pl prn
in PF, Ta[p~ pm] = p, where p is the largest (in the sense of >) tree in PF such
that a(p~ pro) >-- p. This can be seen as follows. I fa(p~ , pro) >-- t, then either
t = v or t = a(p'~ p'm) and, for 1 ___ i <_ m, p, ___ p ' . Then the set

M = {t in PFla(p~ pro)-> t}

is precisely the match set which should be coded by the entry T~[p~ pro],
assuming p, codes the match set with base set tree p~. Recall that by Lemma 5.1
subsumption induces a total order on the elements of M; hence the largest tree p in
PF subsumed by a(p~ pro) is precisely the base set tree of M and thus the code
which should be assigned to T~[p~ pro].

Now observe that by (2), a(p~ pro) > p is easily testable from t~s. Furthermore,
if we process the patterns in PF in increasing order of subsumption and for each p in
PF assignp to all of the entries T ~ [p ~ , . . . , pro] such that a (p ~ , . . . , pro) >- p, then the
last assignment made to the entry will be the maximal subsumedp in PF. Thus, if we
write each p into the appropriate table positions when p is processed, the final values
in the table are the correct ones.

Algortthm B

Input. 0s for a simple pattern forest F

Output" Tables to drive the bottom-up matching algorithm T,[p~, , pro] wdl contain the largest (under
subsumptlon) tree m PF which is subsumed by a(p~, ., p,~)

Method.

1 List PF m increasing order of subsumptmn by performing a topological sort on (~s
2 lnmahze all entries in all tables T~ to v
3. For each pattern p = a(p~ pro) by increasing order of subsumpuon do
4 For each m-tuple (p~, ,p'm) suchthat , for l <_ j <_ m, p~ >_ pj do
5 T , [p l p '] := p.

The table for the symbol a of arity q has patstze q entries. Thus Algorithm B
constructs no more than patsize rank × sym entries. When a tree p is assigned to an
entry in Ta, then p belongs to the match set which should be coded by this entry.
Thus the number of repeated assignments to each entry cannot exceed the size of the
largest match set, that is, the height of Gs. Thus at most patsize rank × sym x ht
assignments are done in step 5.

Note that p ' ranges over those trees in PF such that p" ~ p,. Hence we can find
the necessary tuples easily from the adjacency matrix of Gs. In an implementation of
this algorithm the patterns in PF are numbered, and the tables T~ are indexed by
these numbers. We summarize the complexity of preprocessing patterns in simple
forests by the following.

THEOREM 6.1. We can construct tables to drive the bottom-up matching algorithm
in the case o f simple pattern forest in

O(patsize 2 x rank + patsize r~nk × ht × sym)

time and

O(patsize 2 + sym + patsize rank)

space.

Note that it is easy to test whether a pattern forest is simple. Using Proposition 4.6,
it suffices to test, in step 5 of Algorithm A, whether p and p ' contain two (immediate)

82 C. M. HOFFMANN AND M. J. O'DONNELL

TABLE I TABLE To GENERATED FOR THE SYMBOL a

Right subtree match
Left
subtree match v b a(v, v) a(b, v) a(a(v, v), b)
v a(v, v) a(v, v) a(v, v) a(v, v) a(v, v)
b a(b, v) a(b, v) a(b, v) a(b, v) a(b, v)
a(v, v) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v)
a(b, v) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v)
a(a(v, v), b) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v)

subtrees in corresponding positions which subsume each other in opposite directions.
If such a pair exists, then the pattern forest is not simple.

Example 6.1. We illustrate Algorithm B with the table Ta generated for the symbol
a, given the pattern forest of Example 5.1. The table is essentially that of Example
3.1; however, for readability we represent entries and index values by trees, rather
than enumerating them.

In this example, all table entries are assigned by step 5, so none of them is v.
Consider p = a(a(v, v), b) in the traversal of step 3. The m-tuples of steps 4 and 5
now range over the setsp~ in (a(v, v), a(a(v, v), b), a(b, v)}, since a(a(v, v), b) and
a(b, v) are the two trees subsuming a(v, v), andp~ in {b}, since there is no other tree
subsuming b. So a(a(v, v), b) is entered in Ta[a(v, v), b], Ta[a(a(v, v), b), b], and
T~[a(b, v), b]. The entry Ta[a(v, v), b] had already been assigned the smaller pattern
a(v, v), since a(v, v) > v and b > v, but this entry is wiped out by a(a(v, v), b) at this
time. Table I shows the table T~. []

Clearly Algorithm B constitutes the bottleneck of preprocessing, both in space and
in time requirements. Often the situation can be improved by introducing one or
more pairing functions, thereby reducing rank to 2. Although pairing is always
possible, it need not preserve simplicity of the forest and is thus of limited value.

Example 6.2. Consider the pattern forest {a(b, v, c), a(v, b, d), a(e, c, v)}. All
subtrees other than v are pairwise inconsistent, and thus the forest is simple.
Introducing a pairing function, no matter which subtrees are paired, will introduce
independence. For example, pairing the first and second subtree results in a new
forest {a'(pair(b, v), c), a'(pair(v, b), d), a'(pair(e, c), v)} in which pair(b, v) and
pair(v, b) are independent subtrees. []

There is a different approach to speeding up preprocessing. Recall that Gs
generalizes the failure function of string matching. We suspect that there is an
efficient bottom-up matching algorithm using Gs directly, without any tables. So far
we have only achieved a running time of

O(subsize x patsize × ht)

by this approach, which is inferior to the naive method.

7. Faster Preprocessing for Binary Simple Forests

Algorithm A is quadratic inpatsize since it constructs (~s, the transitive closure of Gs,
rather than Gs. It seems there should be an algorithm for computing Gs for simple
pattern forests which requires O(patsize) steps only. So far, we have not found an
algorithm this efficient, but in the special case of binary simple pattern forests we can
construct Gs in O(patsize × ht 2) steps. Here ht may be as large as patsize, but it is
usually much smaller. Given the algorithm for computing Gs, it is then possible to

Pattern Matching in Trees
a

/ 1 / ~2
o

b/ \ v

Figure 7

83

adapt it to do the pattern matching as well, bypassing the expensive step of table
generation. We sketch the idea of this algorithm next.

Recall that in a simple forest F, for each subpattern p in PF there is exactly one
largest subsumed subpattern p ' in PF, except when p = v. Let f (p) denote this tree
p', that is, the tree immediately subsumed by p. Denote the ith iterate o f f by f ' (p),
0 _ i, where

fO(p) = p,

f '+~(p) = f (f ' (p)) .

Note that Gs is the graph of the function f .
Consider computing f (p) , where the root of p is a binary symbol, that is, p =

a(p~, p2). We should examine trees of the form a(f'(pl), fJ(p2)), i + j > 0, as possible
candidates for f (p) . For this purpose we will maintain sets S(a, pl), where a is in Z
and px is a pattern subtree. Each set contains pairs (p2, p) of subpatterns. The pair
(p2, p) is in S(a, pl) i f fp = a(pl, p2) is in PF. In computing f (p) we now probe in
the sets S(a, pl), S(a, f(pa)), S(a, fZ(pl)) for pairs whose first component is p2,
f(p2), etc. The first such pair found (other than the pair (p2, p) in S(a, pl)) must be
f (p) , since Fis a simple forest. We make at m o s t O(ht 2) probes, sincefnt(t) = v, for
any subpattern.

We can make a single probe efficiently by representing the set S(a, p~) by an array
in which the second component of a pair is stored as the element indexed by the first
component. In order to avoid an O(patsize 2) overhead for initializing all vectors, we
use the constant time array initialization of [2, Ex. 2.12]. The running time of the
algorithm is thus O(patsize × htZ).

Observe that the algorithm can be adapted to do the matching using the sets
S(a, p~) without using the table generation (Algorithm B). This leads to a matching
algorithm which requires at most O(subsize x ht 2) steps.

8. Top-Down Matching Algorithm

Like the bottom-up matching algorithm, our top-down matching algorithm is related
to the Knuth-Morris-Pratt string-matching algorithm. Instead of generalizing string
matching, however, the top-down approach reduces tree matching to string matching.
The top-down method has slower matching time than the bottom-up, but better
preprocessing time.

The key idea of reducing tree pattern matching to string matching is to regard
each path from root to leaf in a tree as a string in which symbols in the alphabet are
interleaved with numbers indicating which branch from father to son has been
followed. Since variables always match, we do not include them in these strings.

Example 8.1. The tree pattern a(a(b, v), c) is associated with the set of strings
{alalb, ala2, a2c}. Note that we have omitted the symbol v from the end of the
second string. Figure 7 shows how the set of strings appears in the given tree. []

84

FIG. 8 (a) Tree pattern (b) Associated the

C. M. HOFFMANN AND M. J. O'DONNELL

(a)

This idea was first noticed by Karp et al. [18] and used in a tree-matching algorithm
with no preprocessing. Their algorithm achieved a matching time of

O((patsize + subsize) x log(patsize))

for one pattern, which must be a full binary tree. For several patterns their algorithm
would require

O((patsize + subsize) x log(patsize) x patno).

Our contribution is to show how, using the Knuth-Morris-Pratt algorithm for
string matching, we can improve the bounds to O(patsize) preprocessing, plus
O(subsize x patno) for matching, in the case of patterns which are full trees. If the
patterns are not full trees, more time for matching is needed. We thus improve the
bound of Karp et al. by a factor of log(patsize).

For simplicity of presentation we develop our results for the case of a single tree
pattern first. Given the pattern p, it is easy to generate all path strings for the root-to-
leaf paths. We could then use the algorithm of Aho and Corasick [1] to produce an
automaton which recognizes every instance of a path string within a subject tree.
Since the combined length of all strings could be O(patsize2), we need to modify this
construction so as to avoid generating the strings explicitly. In this way we can lower
the preprocessing to O(patsize).

The first step in the Aho-Corasick algorithm is to build a trie for the path strings
of the tree pattern p. This trie is called the "goto function" in [1]. A trie is a tree
whose nodes represent the distinct prefixes of the path strings. If node n represents
x and n' represents xa, a in ~ t3 N, then n is father o fn ' , and the edge from n to n'
is labeled a. We illustrate the construction with an example. Since it amounts to a
simple tree transformation, we do not formally give an algorithm.

Example 8.2. The pattern tree a(a(b, v), c) has the associated trie shown in Figure
8. For example, the marked node represents the prefix a2. []

Informally, the the is constructed by first enumerating the outedges of every
pattern node and then splitting every node labeled with a symbol other than v into
two nodes connected by an edge which is labeled with the original node label.

The subsequent steps m constructing a matching automaton are exactly as in [1],
for we are now dealing with a string problem. Thus the entire construction requires
O(patsize) steps if we use a failure-function representation of the automaton and
O(patsize x sym) if we use a transition-matrix representation.

We need to include in this construction a simple modification which records, with
each accepting state of the automaton, the length(s) of the accepted string(s). The
length of a path string is the number of alphabet symbols in it (numbers are ignored).
Thus the length for a2c and ala2 is 2 in both cases.

Pattern MatchinginTrees

a

/ \
a ¢

/ \
b v

(a)

b, c

b,c, 1 ,2

a I I~?

bl ~ ~ c

85

(b)

FIo. 9 (a) Pa t te rn (b) M a t c h i n g au tomaton .

Example 8.3. In Figure 9 we give the automaton associated with the pattern of
the previous example. Accepting states are circled twice and are labeled with the
length of the accepted path string. []

We now have to solve the problem of how the matching algorithm can decide
whether two different path strings begin at the same node and thus contribute to a
pattern match at that node. For this purpose we associate with each node a counter,
initialized to zero. Each counter will record the number of distinct root-to-leaf paths
which match beginning at that node.

Let us traverse the subject tree t in preorder, computing the automaton states as we
visit nodes and traverse edges. For recovering former states when returning from a
completely traversed subtree we can use the traversal stack. Every time the matching
automaton enters a final state, we have matched one or more path strings, and we
should indicate this fact at the points at which the matched paths begin. So we
increment the counters of those nodes by 1. The traversal stack for the preorder
traversal is kept in an array. Thus we can fmd the beginning node of a matched path
string in the traversal stack and can access it in constant time once we know the
length of the matched string.

At the end of the traversal the pattern matches at each node whose counter equals
the number of leaves in the pattern (i.e., the number of path strings). We can now
give the matching algorithm.

We will use an array of triples (n, s, j) as traversal stack, where n is a node in the
subject tree, s the state the automaton has entered when the traversal visits n, and j
a number indicating how many sons of n have been visited. Additionally, we have an
array Count, indexed by nodes n of the subject tree, which contains the associated
counters.

86 ¢. M. HOFFMANN AND M. J. O'DONNELL

W e a s s u m e tha t the a l g o r i t h m uses a t r a n s i t i o n - t a b l e r e p r e s e n t a t i o n o f the a u t o m -

a t o n a n d ind ica t e b y A Is, c] the state the a u t o m a t o n en te r s w h e n in state s r e a d i n g
s y m b o l c.

W e use a p r o c e d u r e Tabulate, w h i c h m a i n t a i n s the c o u n t e r s a n d u p d a t e s the list o f
m a t c h e s found . T h i s p r o c e d u r e c a n access the s tack o f tr iples.

Algorithm D (Top Down Matchmg)

Input A string matching automaton for tree pattern p m transition matrix representation, and a
subject tree t.

Output. A hst, Match, of all nodes in t at which p matches.

Comment. A Is, c] is the state entered from s under input c m the matching automaton.
Stack[t] ~ denotes the ah component of the triple stacked at position t m the array Stack
son,(n) denotes the zth son of tree node n

Method:
1 Match := empty,
2 For all nodes n m t do Count[n] = 0,
3 Nextstate = A [start state, label(root of t)];
4. Top '= l,
5 Stack[Top] = (root oft, Nextstate, 0),
6. Tabulate(Nextstate),
7. While Top > 0 do begin
8 (Thisnode, Thisstate, Nsons) .= Stack[Top],
9. If Nsons = anty(Thisnode) then Top = Top - 1,

10. else begin
11 Nsons '= Nsons + 1,
12. Stack[Top].3 .= Nsons;
13. Intstate = A[Thlsstate, Nsons],
14. Tabulate(Intstate);
15. Nextnode = sonNBo~(Thisnode),
16. Nextstate '= A [lntstate, label(Nextnode)],
17. Top .= Top + 1,
18. Stack[Top] = (Nextnode, Nextstate, 0),
19. Tabulate(Nextstate),
20. end (if)
21 end (while)

Procedure Tabulate (State)
I. For all s such that State has a match of length s
2. do begin
3 n = Stack[Top - s + 1].1;
3 Count[n] .= Count[n] + 1,
4 If Count[n] = number of leaves in pattern then
5 Add n to Match,
6 end (for)

Excep t for the w o r k o f p r o c e d u r e T a b u l a t e , the c o m p l e x i t y o f A l g o r i t h m D is
O(subsize), s ince each edge is t r ave r sed at mos t twice. T h i s is also t rue for the fa i lu re -
f u n c t i o n r e p r e s e n t a t i o n o f the m a t c h m g a u t o m a t o n (see [1]). T h e to ta l w o r k o f
p r o c e d u r e T a b u l a t e is p r o p o r t i o n a l to the n u m b e r o f t imes a n y c o u n t e r has b e e n
i n c r e m e n t e d , o r equ iva l en t ly , to the s u m o f al l c o u n t e r va lues u p o n c o m p l e t i o n o f
the t raversal . W e c a n es t ima te this s u m b y d e r i v i n g a b o u n d o n the n u m b e r o f
d i f fe ren t c o u n t e r s w h i c h c a n be i n c r e m e n t e d in a n accep t ing state, for this wil l also
b o u n d the w o r k d o n e for each cal l o f the p rocedure .

Definition 8.1. G i v e n a tree p a t t e r n p a n d a p a t h s t r ing s o f p, the suffix number
o f s is the n u m b e r o f p a t h s t r ings s o f p w h i c h are suffixes o f s, i n c l u d i n g p itself. T h e
suffix index o f p is the m a x i m u m suffix n u m b e r o f the p a t h s t r ings o f p .

Pattern Matching in Trees 87

Equivalently, the suffix index is the largest number of counters which could be
incremented in any accept state of the automaton.

Example 8.4. For the pattern p = a(a(a(v, b), c), b) we have the path strings
alalal , alala2b, ala2c, a2b. The suffix number of ala la l is 1, whereas the suffix
number of alala2b is 2, since a2b is a suffix which occurs as root to leaf path in p.
The suffix index o f p is also 2. []

THEOREM 8.1. Algorithm D requires O(subsize x suf) steps, where suf is the suffix
index of the pattern to be matched.

For patterns which are full trees, that is, all path strings are of equal length, suf
must be 1, since a distinct path string sl can be a proper suffix of a distinct path
string s2 only if sl is shorter than s2. This gives us

COROLLARY 8.2. I f Algorithm D matches a pattern which is a full tree, then only
O(subsize) steps are needed.

In the worst case, sufcould be O(patsize).

Example 8.5. Consider the pattern,

pk = a(a(.., a (v, b) . . . b), b).

k times

Its suffix index is k, owing to the path string (al)k-la2b, which has every shorter path
string as suffix. Note that patsize is 2k + 1. []

COROLLARY 8.3. The bound of O(subsize x patsize) for Algorithm D is attained
for certain patterns.

PROOF. Consider matching the pattern pk of Example 8.5 in the subject,

tn = a(a(.., a (c, b) . . . b), b),
J

n times

where n = k + m. Then the sum of the counter values in tn after Algorithm D has
finished exceeds m × k. Note that patsize is 2k + 1 and subsize is 2n + 1. []

We thus have in Algorithm D a performance range anywhere between that of the
bottom-up algorithm and that of the naive matching algorithm, depending on the
structure of the pattern.

Without going into details we note that Algorithm D may be adapted to assimilate
local changes in the subject tree. As in the case of the bottom-up algorithm, we need
to reprocess only a small area surrounding the part which has changed. However, the
algorithmic details are far more complicated than in the case of the bottom-up
algorithm, although in principle quite straightforward.

We conclude this section with a brief discussion of how to match more than one
tree pattern, using the approach of Algorithm D.

Recall that we represent a tree pattern by its root-to-leaf path strings. We can do
this for several patterns as well, but we should keep track of which pattern(s) each
path string comes from. The preprocessing algorithm can be adapted to process
several patterns by building separately for each pattern the associated trie and then
merging these tries, keeping track of which pattern(s) each path string at a leaf of the
trie belongs to. This can be done in O(patsize) steps resulting in a trie of O(patsize)
nodes. Now apply the methods of [1] to complete the trie to a matching automaton.

88

Figure 10

C. M. HOFFMANN AND M. J. O'DONNELL

In the case of a single pattern we associated with each of the final states a list of the
lengths of the matched path strings. For multiple patterns we now associate with
final states lists of pairs. Each pair gives the length of the matched path string and
the pattern to which it belongs.

It remains to explain how we can correlate matches of individual path strings. We
do this simply by associating patno counters with each node in the subject tree and
dedicating the ith counter to counting how many path strings of the ith pattern have
been matched, beginning at that node. If the ith counter reaches a value equal to the
number of leaves of the ith pattern, then we have just matched the ith pattern.

As before, the work is proportional to the subject size plus the sum of all counter
values and can be estimated as

O(subsize × max(suf) x patno),

where the maximum is taken over all tree patterns in the forest. This bound is easily
shown to be the best possible, generalizing Corollary 8.2. Furthermore, if no path
string is a suffix of another, then we have only O(subsize) steps for matching such a
pattern forest.

9. Improvements to Top-Down Matching and Related Work

Recently, Lang et al. [24] improved Algorithm D by basing the matching of path
strings on the Boyer-Moore algorithm [4]. Since the Boyer-Moore algorithm requires
the ability to skip portions of the subject string, a different representation of trees is
used: Trees are represented by ordered lists of left paths.

Example 9.1. For the tree t = a(b(c), a(d, c)) the list of left paths is (abc, ad, c),
as shown in Figure 10. []

We can obtain left paths by first deleting from each path string the longest prefix
ending with a branch number greater than 1 and then deleting the remaining branch
numbers. Thus, from a2aldwe obtain ad, and from a2a2c we get c. The list of these
left paths uniquely determines a binary tree. For alphabet symbols of arity higher
than 2, additional information has to be given for each left path string.

The algorithm first preprocesses the list of left paths of the pattern, constructing a
Boyer-Moore-type automaton for recognizing the first left path, combined with an
Aho-Corasick-type automaton for recognizing the remaining left paths. A match of
the remaining left paths is attempted only at places at which the first left path has
been completely matched. Note that the advantages of the Boyer-Moore machine
diminish as the number of different strings to be matched increases. See [8] for a
discussion of this phenomenon. The subject tree is also represented as an ordered list
of (linked) left paths, so that we can skip ahead for the Boyer-Moore matching
technique.

A subtlety of the algorithm, when it is applied to trees of arity exceeding 2, arises
from the fact that a match of the j th left path implies an update of the appropriate
counter only if the counter has a specific value, because the left path may be
descending from a node with more than two sons. For details see [24].

Pattern MatchhTgin Trees 89

Lang et al. [24] implemented both their algorithm and our Algorithm D. First
experiments seem to indicate a sublinear average matching time for their algorithm.
The worst-case performance of their algorithm is the same as that of Algorithm D.

Overmars and van Leeuwen [27] have given algorithms to match lexicographic
trees, that is, trees in which the branches rather than the nodes are labeled with
symbols from an alphabet. They assume that the branches emanating from each
node are ordered left to right by their labels and that no label occurs more than once.
Lexicographic trees arise as tries.

Overmars and van Leeuwen consider matching a given lexicographic tree (the
pattern) in a larger lexicographic tree (the subject). A match is an alignment of the
pattern nodes with certain subject nodes. The alignment must respect the father-son
relation in such a way that the branches emanating from a subject node are labeled
with the same symbol as the corresponding pattern branches. Note that not all
branches of a subject node need to be covered by corresponding pattern branches.

Their algorithms were discovered independently from our work. Their technique,
like our Algorithm D, is based on Karp et al.'s idea of matching path strings. In the
case of lexicographic trees, however, no branch numbers need to be interleaved in
path strings. Overmars and van Leeuwen also use counters to coordinate the matches
of path strings.

Their best algorithm does preprocessing of the pattern similar to ours, identifying
for each path string the suffixes which are also path strings. They give the prepro-
cessing in their own terminology, but it amounts essentially to the algorithms of [1].
Their best matching algorithm has the same worst-case time bound as our Algorithm
D. Other algorithms given in [27] do little or no preprocessing of the pattern and
have inferior bounds on the matching time.

We wish to stress that the approaches of Algorithm D, Overmars and van Leeuwen,
and Lang et al. are inherently limited by using counters for deciding whether there
is a match. As long as counters are used and incremented in steps of one up to the
number of leaves of a pattern, a simple counting argument shows that the bound of
Theorem 8.1 cannot be improved except by a constant factor. We see only two ways
for improving this situation. Either means are found to increment counters in larger
steps (or, equivalently, to smaller values) or a new method for coordinating path
strings is used. The former would imply that recording of matches is delayed in some
way. For the latter approach we can offer a solution which reduces the worst case
bound to O(subsize + match).

Assuming a machine model in which, in constant time, we can perform bit-string
operations of union, intersection, and right shift by one position, we can improve
Algorithm D as follows. We associate with each node n of the subject tree a bit string
bn in which the ith bit (from the right) is 1 iff every path from the ancestor of n at
distance i, through n, to every descendant of n, has a prefLx which is a path string of
the pattern we wish to match. Note that we do not need to use bit strings longer than
the height of the pattern. There is a match of the pattern at node n iff bn has a 1 in
the rightmost position.

Example 9.2. Consider the tree pattern a(a(b(v), c), a(v, v)). Assume we wish to
match it in the subject fragment shown in Figure 11. We should assign the bit string
100 to node 3, since we have a match of the path string alalbl, and also to node 4,
because of the path string a 1 a2c. Note that both path strings are of length 3. To node
5 the bit string 010 is assigned, because the two path strings a2al and a2a2 match,
both of length 2. To node 2 we assign the bit string 010, since every path originating

90 c . M . HOFFMANN AND M. J. O'DONNELL

FIG 11 (a) Pattern (b) Subject.

(a) a'

v

(b) I a /

3b/ 4/\
1

at node 1, the ancestor of node 2 at distance 1, and going through node 2 has a prefix
which is a path string in the pattern. Note that 010 can be obtained as the right shift
by one of (100 n 100), the intersection of the two bitstrings assigned to the two sons
of node 2. Node 1 will be assigned the bitstring 001. The 1 at the extreme right
signals the presence of a pattern match. []

Note that in this example bit strings of length 3 are used, since the length of the
longest path string in the pattern is 3. We need to explain how these bit strings can
be computed. During preprocessing we associate with each accepting state s a bit
string b, in which the ith bit is 1 iff a path string of length i is accepted. By carefully
considering the techniques of [1] we can design this preprocessing step to require
O(patsize) time at most.

Traverse the subject tree in preorder as before. When reaching a node for the first
time in the traversal, initialize bn to bs, where s is the corresponding state in the
matching automaton. Then, when coming to n for the last time, that is, after all
subtrees have been visited, update bn by

bn := bn O n rightshift(b~on,(~)),
J

where riglitshift means a shift by one bit position to the right, introducing 0 on the
left. This method then has, as worst case, O(subsize + match) time requirement for
matching, since we eliminated the work of procedure Tabulate.

Note that we need not associate bit strings with nodes permanently: Upon
completing the traversal of a subtree rooted in n, the bit strings associated with the
sons of n are no longer needed. Thus we may keep all bit strings in the traversal stack
(plus rank additional cells). Similarly, we could have reduced the space requirements
for Algorithm D by keeping the counters on the traversal stack.

10. Bottom-Up Matching with Bit-String Operations
I

Since most computers allow unions, intersections, and complements of sets r~pre-
sented as bit strings to be performed in a small fixed number of instructionS, we
explore the possibility of representing match' sets by bit strings and computing them
directly at match time, thus avoiding the costly table generation of Section 6.

Let F be a pattern forest and PF the set of all subpatterns in F.

Definition 10.1. Define the sets Ua for each a in the alphabet as follows;

[(v} if a is nullaryand not in PF,
Ua = ~ {a, v} if a is nullary and in PF,

l { t i n P F l t = a (t x , - . . , t q) } U (v) if a isq-ary, q > 0 .

Furthermore, define a set valued function on pattern sets by

Father,(M) = {t' in PFlson,(t') in M}.

Pattern Matching in Trees 91

We now recast Definition 4.2 as

Definition 10.2

(1) Match(a) -- Ua if a is nullary.
(2) Match (a(tl tq)) = (Ua O Fatherl(Match(tl)) O . . . O Fatherq(Match(tq)))

u (v}.

Part (2) says that the subpatterns which match at a(tl tq) are exactly v plus
those trees within Ua whose sons match the tl tq. A table for the sets Ua is easily
precomputed in a single pass over the patterns in F in O(patsize) time and O(sym)
additional space. Now, if we can find a simple way to compute Father,(M), we may
assign match sets in bit-string form to each node of the subject in a simple postorder
traversal of the subject tree.

A direct computation of Father,(M) seems to require a loop through all subpatterns.
We suggest therefore a hashing approach. We precompute a hash table for all match
sets and store Father,(M) for 1 <_ i <_ rank at the table entry for M. Such a table
consumes O((set/load) x rank), where load is the loading factor of the hash table,
compared to O(set rank × sym) for the tables described in Section 4.

Given a hashing function for the M, the precomputation of Father,(M) in the most
straightforward way takes time

O(set x rank × patsize).

In time O(set x patno) we can add to each entry M a list of indices i such that the
entire pattern p, is in M. This list allows us to detect matches immediately from the
match sets. The only additional problem is how to choose a suitable hashing function.
Since we deal with a fixed forest of tree patterns, we would like to derive "perfect"
hashing functions [32], that is, hashing functions which have no collisions on the set
of keys. For this, we offer two alternatives.

In the case of simple pattern forests, we take advantage of the results of Section 5,
which showed that all match sets have singleton base sets. We enumerate the patterns
in PF in increasing order of subsumption, for example, a depth-first numbering of
Gs. In this way the base-set subpattern is always represented by the leftmost nonzero
bit in the string representation of the set. Since different match sets have different
base sets, they must have different numbers of leading zeros. Our hashing function
now simply counts the leading bits, thereby achieving a perfect minimal hashing
function. Note that a practical implementation of this is possible, since on most
computers there is an instruction to normalize floating-point numbers, which involves
counting leading zero bits.

For nonsimple forests the work of Sprugnoli can be used [32]. His algorithms
derive a perfect hashing function using multiplication, addition, and division, but the
function does not guarantee a high loading factor. Unfortunately, there is no analysis
of his algorithms, so the exact space and time bounds are not known. Further
research is needed to investigate whether there are special properties of match sets
which lead to minimal perfect hashing functions which can be derived in a reasonable
amount of time.

Bit-string representation of match sets offers another advantage. Recall that the
number of match sets may be exponential in the pattern size. Therefore we should
control the table size in those cases. This is possible with the following observation
about the Father function:

Father~(M1 U M e) - - Father,(Ml) U Father,(M~).

D

Z

[--

Z

<

Z
<

0
Z

©

,.,e

r.)

Z <

..1

<
[..

~ m

~ o

8"o

X

~ . X

+ + +

~,~+ ~'+ ~,+
+ + ~

x x x + + + + +

~ ~ x ~ x

+ ~

X

x ~ ~ i . . ~ ~,-,,~x~"

X + + X X X + + X +

2

x + ~ ~

X X m..., x ~ ~ ~', ~ ~

- ~ ,g..~ x ~ ~ + ~x ~ ~ . ~ o ~_
I-,i N I-I

~ ~ x ~ , ~

$

0 ~ 0 ~ 0

~,+
×~

t,l

g x

. ~ +

,%+
x l

5 x

¢-

+ , ~ x o

× ×

g g

X ~

~ x +

~ ..B ,r-.,

iXl

Pattern Matching in Trees 93

Thus we may partition the set PF into a fLxed, chosen number part of blocks
P~ Ppart and represent each match set M by the tuple,

(M A P1, M A P2 M A Ppart).

Then (l) and (2) of Definition 10.2 become

(l ') Match(a) n Pj = Ua n Pj.
¢1 t~'a~t Fatherl(Match(tl)) n Pk} n n (2') Match(a(6, . . . , tq)) n Pj = (U~ n t,-,k=~ " "

{u~r~tFatherq(Match(tq)) n Pk} u {v}) n Pj.

For the analysis, let set, be the number of match set segments in the ith partition
block P,:

set, = [{Match(t) n P,[t in S} I.

We can then express the table size as

set1 + . . . + set, art
o \l ad x

and the matching time as O(subsize × part + match).
For the case where set is nearly 2 "at and the partition sizes I P,[are each

approximately equal, that is, patsize/part, the table size may be expressed as

f part . 2Pats t ze /par t x -[- patno)) . 0 \ ~ - ~ 7, (rank
I

This formula gives a good idea of the space-time trade-off involved. Given a set of
patterns, the problem of choosing a good partition is as yet unexplored. Since it may
lead to a clique problem (Theorem 4.3), it can perhaps only be approximated.

11. Conclusions

Table II summarizes the time and space complexities for the preprocessing and
matching techniques we have discussed. The trade-offs are so complex that we cannot
choose an all-round best method. Each of the techniques offers some strengths and
has certain weaknesses.

As in the case of sorting, users of tree-matching algorithms must choose a strategy
carefully, on the basis of special properties of the patterns and subjects involved, the
number of different subjects expected (and their relationship, if any) for the same set
of patterns, and the available time and space resources.

We note that our top-down algorithm is always better than the one of Karp et al.
[18] and as good as the one of Overmars and van Leeuwen [27], although they have
a different notion of matching in mind. It is only in especially space-limited situations
that the naive matching algorithm should be chosen. The version of Lang et al. [24]
might be an interesting alternative, but further experimentation seems necessary to
understand better what practical advantages it has to offer.

For the quickest matching time, the bottom-up algorithm, driven by tables, is best.
We have used it in our interpreter generator and feel that for this application, the
additional matching speed justifies the added preprocessing ume, as long as the table
size stays reasonable. Our experience with the algorithm is confirmed by the work in
[10]. When too many match sets are expected, we suggest the bit-string and hash-
table methods which trade off space and time very flexibly.

94 c . M . HOFFMANN AND M. J. O'DONNELL

REFERENCES

(Note. References [5, 19] are not cited in the text.)
l AHO, AN., AND CORASICK, M J. Efficient stnng matching: An aid to bibliographic search. Commun.

ACM 18, 6 (June 1975), 333-340
2. AHO, A.V, HOPCROFT, .I.E., AND ULLMAN, 'i D. The Design and Analyas of Computer Algorithms.

Addison-Wesley, Reading, Mass, 1974.
3. BAXTER, L.D. The complexity of unification. Ph.D. Dissertation, Dep. of Computer Science, Univ.

of Waterloo, Waterloo, Ontario, Canada, 1976
3a BERRY, G , AND L~VY, J -J Minimal and optimal computations of recurslve programs. 4th ACM

Symp. on Principles of Programmmg Languages, Los Angeles, Cahf, 1977, pp 215-226
4 BOYER, g S., AND MOORE, J.S. A fast stnng searching algorithm Commun ACM 20, 10 (Oct 1977),

762-772
5 CARTER, J L, AND WEGMAN, M.N Universal classes of hashing functions Proc 9th Ann. Syrup on

Theory of Computmg, Boulder, ColD, 1977, pp 106-112.
6 CHEW, P An improved algorithm for computing with equations Proc 21st IEEE Symp on

Foundations of Computer Science, Syracuse, N.Y, 1980, pp. 108-117
7 COLLINS, G The SAC-I system' An introduction and survey Proc 2nd ACM Conf on Symbolic

and Algebraic Manipulation, Los Angeles, Cahf, 197 l, pp 144-152
8. COMMENTZ-WALTER, B A string matching algorithm fast on the average In Automata, Languages

andProgrammmg, Lecture Notes m Computer Science 71, H A Maurer, Ed, Spnnger-Verlag, Berlin,
Heidelberg, New York, 1979, pp. 118-132.

9. DOWNEY, P J , SAMET, H, AND SETHI, R Off-line and on-lme algorithms for deducing equalities
Proc 5th Ann ACM Symp on Pnnoples of Programming Languages, Tucson, Anz, 1978, pp.
158-170.

10 GLASNER, I, MONCKE, U , AND WILHELM, R OPTRAN, a language for the speoficatlon of program
transformations 6th G I Fachtagung uber Programmlersprachen, Darmstadt, W Germany, 1980, to
appear In Lecture Notes in Computer Science

I I. GOGUEN, J.A Some design principles and theory for Obj-0 Proc Int Conf on Mathematical Studies
of Information Processing, Kyoto, Japan, 1978, pp 429-475.

12. GUTTAG, J , HOROWITZ, E, AND MUSSER, D. Abstract data types and software vahdauon. ISI Rep
76-48, Univ. of Southern Cahfornia, Los Angeles, Calif., 1976.

13. GUTTAG, J V, HOROWITZ, E, AND MUSSER, D R Abstract data types and software vahdatlon
Commun. ACM 21, 12 (Dec 1978), 1048-1064

14 HOFFMANN, C M, AND O'DONNELL, M J An Interpreter generator usmg tree pattern matching
Proc. 6th Ann ACM Symp on Principles of Programming Languages, San Antonio, Texas, 1979, pp.
169-179

15. HOFFMANN, C.M., AND O'DONNELL, M.J. Programming with equations ACM Trans Prog Lang
Syst 4, 1 (Jan 1982)

16 HUET, G., AND LANG, B Proving and applying program transformations expressed with second
order patterns Tech Rep 266, IRIA Labona, LeChesnay, France, 1977

17 HUET, G, AND LEVY, J - J Call by need computations in nonambiguous hnear term rewriting
systems Tech. Rep 359, IRIA Laborla, LeChesnay, France, 1979.

18 KARP, R , MILLER, R E., AND ROSENBERG, A Rapid identification of repeated patterns in strings,
trees and arrays Proc 4th Ann ACM Symp on Theory of Computing, Denver, Colo., 1972, pp
125-136

19 KNUTH, D. The Art of Computer Programming, Vol 3 Sorting and Searching Addison-Wesley,
Reading, Mass, 1973

20 KNUTH, D., AND BENDIX, P. Simple word problems in universal algebras In Computational Problems
tn Abstract Algebra, ,i Leech, Ed, Pergamon Press, Elmsford, N Y, 1970, pp 263-297.

21 KNUTH, n., MORRIS, J , AND PRATT, V Fast pattern matching in strings. SlAM J Comput 6, 2
(1977), 323-350

22 KOZEN, D Complexity of finitely presented algebras Proc 9th Ann. ACM Symp on Theory of
Computing, Boulder, ColD, 1977, pp 164-177

23 KRGN, H. Tree templates and subtree transformauonal grammars Ph D Dissertation, Unlv of
Cahfornla, Santa Cruz, Cahf, 1975

24 LANG, H -W, SCH1MMLER, M , AND SCHMECK, H Matching tree patterns subhnear on the average
Tech Rep, Dep of Informatlk, Omv Klel, Klel, W Germany, 1980

25 NELSON, G , AND OPPEN, D Fast deoslon procedures based on congruence closure J ACM 27, 2
(April 1980), 356-364

26 O'DONNELL, M J Computing m systems described by equations In Compunng and Systems De-

Pattern Matching in Trees 95

scribed by Equations, Lecture Notes m Computer Science 58, G Goos and J Hartmanls, Eds,
Sprlnger-Verlag, 1977

27 OVERMARS, M H, AND VAN LEEUWEN, J Raptd subtree identification revisited Tech Rep CS-79-3,
Unlv of Utrecht, Utrecht, Netherlands, 1979

28 PATERSON, M S, AND WEGMAN, M Linear unification Proc 8th ACM Symp on Theory of
Computing, Hershey, Pa, 1976, pp 181-186

29 ROBINSON, J A A machine-oriented logic based on the resolution principle. J ACM 12, 1 (Jan
1965), 23-41

30 ROSEN, B Tree-mampulatmg systems and Church-Rosser theorems J ACM 20, 1 (Jan 1973),
160-187.

31 SHOSTAK, R E An algorithm for reasoning about equahty Commun ACM 21, 7 (July 1978),
583-585

32 SPRUGNOLI, R Perfect hashing functions A single probe retrieving method for static sets Commun
ACM 20, 11 (Nov 1977), 841-850

33 STAFFORD, G Structure of the Eh compiler Master's Thesis, Dep of Computer Science, Umv of
Waterloo, Waterloo, Ontario, Canada, 1977

34 WAND, M Algebraic theories and tree rewriting systems Tech Rep 66, Dep of Computer Science,
Indiana Umv, Bloomington, lnd, 1977

RECEIVED MARCH 1979, REVISED NOVEMBER 1980, ACCEPTED DECEMBER 1980

Journal of the A,.soetatlon for Computing Machinery, Vol 29, No I, January 1982

