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ABSTgACT. Tree pattern matching is an interesting special problem which occurs as a crucial step m a 
number of programmmg tasks, for instance, design of interpreters for nonprocedural programming 
languages, automatic implementations of abstract data types, code optimization m compilers, symbohc 
computation, context searching in structure editors, and automatic theorem provmg. As with the sorting 
problem, the variations in requirements and resources for each application seem to preclude a uniform, 
umversal solution to the tree-pattern-matching problem. Instead, a collection of well-analyzed techmques, 
from which specific applications may be selected and adapted, should be sought. Five new techniques for 
tree pattern matching are presented, analyzed for time and space complexity, and compared with 
previously known methods. Particularly important are applications where the same patterns are matched 
against many subjects and where a subject may be modified incrementally Therefore, methods which 
spend some tune preprocessmg patterns in order to improve the actual matching time are included 
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1. Introduction 

M a n y  compu t ing  techniques  involve  s impl i fy ing  express ions  (trees) by  r epea ted ly  
rep lac ing  special  types  o f  subexpress ions  (subtrees)  accord ing  to a set o f  r ep lacemen t  
rules. F o r  example ,  

(1) H o f f m a n n  and  O ' D o n n e l l  [14] show how tree rep lacements  m a y  be used in 
au toma t i ca l ly  genera ted  in terpre ters  for  n o n p r o c e d u r a l  p r o g r a m m i n g  languages.  The  
def in ing  equa t ions  for the  p r o g r a m m i n g  l anguage  are  t a k e n  as the  r ep l acemen t  rules. 
A n  in te rpre te r  m a y  then  process  an  inpu t  express ion  by  rep lac ing  subexpress ions  
accord ing  to the  given rules unt i l  no  more  r ep lacement s  a re  possible.  In te rpre te rs  
m a y  be  gene ra t ed  which  are  abso lu te ly  fa i thful  to the  semant ics  o f  the  l anguage  as 
given by  the def in ing  equat ions .  The  t r ee - rep lacement  a p p r o a c h  is very  convenien t  
for  p roduc ing  in terpre ters  for exist ing l anguages  such as L I S P  and  L U C I D  or  for  
i m p lemen t ing  expe r imen ta l  languages .  Elsewhere,  the  mer i t s  o f  the  l anguage  o f  
equa t ions  as a p r o g r a m m i n g  l anguage  in its own r ight  are  e x a m i n e d  [15]. 

(2) G u t t a g  et al. [12] and  W a n d  [341 suggest  that  def in ing  equa t ions  m a y  be t rea ted  
as tree r ep lacement  rules to y ie ld  direct  imp lemen ta t i ons  o f  abs t rac t  da t a  types.  
Gut tag  et al. [13] describe a working system based on this idea, as does Goguen  [11]. 
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Such a system does not differ in essence from the interpreters or equational programs 
in (1) but in this case would be embedded into a procedural language as subroutine. 

(3) Intermediate code produced by a compiler may be represented by trees. 
Certain types of code optimizations, for example, the ehmination of redun- 
dant operations and constant propagation, may be viewed as replacement rules 
[10, 16, 331. 

(4) In [7] Collins represents algebraic terms as trees and formulates symbolic 
computation as tree replacements. The replacement rules formalize operations such 
as differentiation and certain algebraic simplifications. 

(5) One approach to the automatic proving of equational theorems is to treat a set 
of equational axioms as replacement rules and transform one side of the equation to 
be proved into the other by a sequence of tree replacements. Knuth and Bendix [20] 
discuss some of the cases in which tree replacements yield efficient theorem provers. 
Most studies of equational theorem proving, such as [9, 22, 25, 31], have not used the 
replacement system approach. Chew [6] has recently developed an algorithm com- 
bining replacement systems with the methods of Nelson and Oppen [25]. 

Many of the theoretical properties of tree replacement systems have been studied 
in [3a, 11, 23, 26, 30]. In this paper we develop theoretically and practically efficient 
algorithms for one of the key technical issues in implementing replacement systems. 

An implementation of a tree replacement system requires practical solutions for 
the following: 

(a) a method for finding subtrees which may be replaced; 
(b) a way of choosing the next replacement to be performed; 
(c) a way of actually replacing the subtree. 

Part (c) is an easy programming problem; (b) is a question which is quite complicated 
m its theoretical effects. It has been treated abstractly in [26] and algorithmically in 
[14]. Part (a) is the subject of this paper. 

A large part of the overhead in implementing tree replacements comes from the 
repeated searching for the next subtree to be replaced. This is essentially a tree- 
pattern-matching problem. We believe that good solutions to the problem of tree 
pattern matching are a prerequisite for making implementations based on tree 
replacements competitive in efficiency with ad hoc methods, especially in the realm 
of interpreters for nonprocedural languages. 

Tree pattern matching is analogous to the problem of pattern matching in strings 
studied in [1, 4, 21]. We consider two essentially different ways of extending the 
Knuth-Morris-Pratt string-matching algorithm to tree patterns, each with several 
variations. 

One may view first-order unification as a tree-pattern-matching problem [3, 28, 
29]. However, first-order umfication differs from the tree pattern matching considered 
here in that a pattern is matched against the entire subject tree and not against proper 
subtrees as well. Pattern matching in our sense has been studied in [18, 23, 24, 27]. 
With the exception of [23], these papers examine the problem without considering 
the specific requirements of subtree replacement systems. Karp et al. [18] give an 
algorithm which finds all matches of a pattern tree to subtrees of a subject. By 
preprocessing the pattern(s) involved we get more efficient methods. Recently, 
Overmars and van Leeuwen [27] have studied tree pattern matching, but with a 
different class of trees. They discovered independently many of the techniques we 
develop in Section 8, and their fastest algorithm has a performance equal to our 
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Algorithm D. We discuss their results and the relationship to our work in Section 9. 
Kron's work [23] is related to the bottom-up techniques of Sections 3 and 4. We 
discuss the details at the end of Section 4. 

In applications of tree replacements the same set of rules is typically used many 
times. Preprocessing of the rules is advantageous if it speeds up their application. 
Each replacement causes a local change in the subject tree. So our pattern-matching 
techniques should be able to respond incrementally to local changes in the subject to 
avoid repeated rescanning of the entire tree. For the sake of a simple presentation we 
discuss each algorithm in terms of a static subject first and then introduce adaptations 
to handle changing subjects. 

In Section 2 we precisely define the matching problem and our criteria for a good 
solution. The remainder of the paper divides into two parts, corresponding to the two 
basic approaches we give. Sections 3-7 develop the bottom-up approach to pattern 
matching. Here we match in a subject tree by traversing it from the leaves to the 
root. This method is a significant generalization of the Knuth-Morris-Pratt string- 
matching algorithm. In Sections 8 and 9 we give our second approach, matching top 
down by traversing the subject root to leaves. While the bottom-up method gener- 
alizes string matching, the top-down method reduces tree matching to a string- 
matching problem. 

The bottom-up method is characterized by more expensive preprocessing but faster 
matching and a better response to local changes. It is developed from the notion of 
match sets--sets of subpatterns which match at a particular tree node. The basic 
matching algorithm is introduced m Section 3. Properties of match sets are studied 
in Section 4. Since it turns out that certain tree patterns have exponentially many 
different match sets, which would lead to an exponential preprocessing algorithm, 
we introduce in Section 5 a restriction on tree patterns which allows efficient 
preprocessing algorithms. Section 6 gives the preprocessing algorithm and discusses 
its relationship with the preprocessing algorithms in [1, 21]. In Section 7 we sketch a 
better preprocessing algorithm for binary tree patterns. 

Sections 8 and 9 give our top-down algorithm and discuss possible improvements. 
These algorithms have better preprocessing times than the bottom-up method, but 
the matching times and update behavior are inferior to the bottom-up method. Tree 
patterns are reduced to strings which are matched along paths in the subject, as in 
[18]. The preprocessing for this technique is little more than the preprocessing 
algorithm for string matching [1]. The basic idea of the top-down method lies in the 
use of counters for coordinating the matches of different path strings. This counting 
also turns out to be the limiting factor of the algorithm and is responsible for the 
worst-case bound. We can improve this bound on machines with bit-string operations, 
as indicated in SecUon 9. 

For the restricted class of tree patterns introduced in Section 5 we have prepro- 
cessing algorithms which require 

O(patsize 2 + patsize "an~ × ht) 

steps. Here patsize is the sum of the pattern sizes, ht the height of a specific tree 
which has to be constructed as part of preprocessing, and rank the highest rank in 
the alphabet. In the worst case ht may be as big as patsize. The actual match, bottom 
up, requires O(subsize + match) time, where subsize is the size of the subject tree and 
match is the number of matches found. For binary alphabets we have a preprocessing 
algorithm which requires only O(patsue × ht z) steps when coupled with a modified 
bottom up matching algorithm requiring 

O(subsize × ht + match). 
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a /\b 
b / \b 

Figure 1 

For top-down matching we have an O(patsize) preprocessing algorithm. Here we 
need no restrictions on the tree patterns. The matching requires 

O(subsize × suf × patno) 

steps, where suf is a quantity depending on the structure of  the pattern suffixes (at 
most equal to the maximum height of  a pattern) and patno is the number  of  tree 
patterns to be matched. For  machines with bit-string operations we can, within the 
same time bound for preprocessing, match using a different technique in only 
O(subsize × patno) steps. I f  each pattern has a height not exceeding the number  of  
bits in a machine word, then this algorithm is of  practical importance. 

In Section 10 we discuss other possibilities of  bot tom-up tree pattern matching on 
machines with bit-string operations, and a trade-off principle for matching time 
versus preprocessing time and space. 

2. The Tree-Matching Problem 

We are given a finite ranked alphabet Z of function symbols, including constants as 
nullary functions. S denotes the set of  Z-terms, formally defined as follows. 

Definition 2.1 
(i) For  all b in Z of  rank 0, b is a Z-term. 

(ii) I f  a is a symbol of  rank q in ]g, then a(tl . . . . .  tq) is a Z- term provided each of  
the t~ is. 

(iii) Nothing else is a Z-term. 

We view Z-terms as labeled ordered trees. Thus the term a(a(b, b), b) is the tree of  
Figure 1. Note that the trees a(a(b, b), b) and a(b, a(b, b)) are considered to be 
different. In the following we use "Z-tree" and "Z- term" interchangeably. 

We are also given a special nullary symbol v, not in Z, to serve as placeholder for 
any Z-tree. We defme the set of  Z U {v}-terms just as ]g-terms but add to (i) that v 
is a Y. t_J {v}-term. So denotes the set of  Z U {v}-terms. 

Definition 2.2. A tree pattern is any term in So. I f  b(tl, . . . ,  tq) is a term, then 
define son,(b(tl . . . . .  tq)) to be t~ for 1 _< i <_ q. 

We now explain how tree patterns are to be matched in Z-trees. 

Definition 2.3. A pattern p in So with k occurrences of  the symbol v matches a 
subject tree t in S at node n if there exist ]g-trees tl . . . . .  th in S (not necessardy the 
same) such that the Z-tree p ' ,  obtained from p by substituting t, for the i th occurrence 
of  v in p, is equal to the subtree of  t rooted at n. 

Example 2.1. Consider the pa t t e rnp  = a(a(b, v), v), with two occurrences of  the 
symbol v, and the Y~-tree t = a(a(b, c), a(a(b, b), b)). T h e n p  matches t at the two 
nodes marked in Figure 2. For  the match at the root, the trees tl and t2 to be 
substituted inp  are tl = c and t2 = a(a(b, b), b). For  the match at the marked interior 
node we have tl = b and t2 = b. [] 

We wish to solve a matching problem in which we are given a finite set of  patterns 
p~ . . . . .  pk from So and a subject tree t from S and are asked to identify in t every 
node at which any of  the p, match. 
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FIG 2. (a) SubJect tree. (b) Pattern. 
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Definition 2.4 (The Matching Problem). A matching problem consists of a finite 
set of patterns pl . . . . .  pk in So and a subject tree t in S. A solution to a matching 
problem is a list of all the pairs (n, i), where n is a node in t and p, matches at n. 

Our definition is motivated principally by algorithmic problems arising in the 
implementation of subtree replacement systems. Allowing different substitutions for 
different occurrences of v is equivalent to using a different variable symbol at each 
occurrence. This restriction is motivated by theoretical problems which arise when 
repeated variables are permitted in the specification of the replacement axioms [26, 
Sec. VII]. 

Note that So contains S as subset. Thus every E-tree is also a pattern. We develop 
our results assuming patterns contain at least one occurrence of v, since patterns 
without variable occurrences are uninteresting from a practical viewpoint. This 
assumpuon does not limit our results. 

Our matching problem is in some ways more specific, and in some ways more 
general, than first-order unification. Our use of v corresponds to allowing terms with 
nonrepeated variables as patterns, while in first-order unification repeated variables 
are allowed and variables may also appear in the subject. On the other hand, in 
unification only two trees are matched against each other, and only at the root, 
whereas we match any number of patterns anywhere in the subject tree. 

Definition 2.5. The size of a tree is the total number of subtrees (equivalently, 
nodes) in it. The size of a forest is the sum of the sizes of all trees in it. The height of 
a tree is the number of edges in a longest path from the root to a leaf of the tree. 

We are especially interested in applications in which the set of patterns remains 
fixed and is to be matched against a sequence of subject trees. We therefore consider 
preprocessing the tree patterns and distinguish preprocessing time, involving opera- 
tions on the patterns independent of any subject tree, and matching time, involving 
all subject dependent operations. Minimizing matching time is the first priority. 
Preprocessing time is then minimized with respect to a fixed process for matching. 
Trade-offs between preprocessing time and matching time are considered if the 
improvement in preprocessing is dramatic and the degradation in matching is small. 
We also consider the space requirements in preprocessing and matching. 

We are especially interested in algorithms which may deafly be adapted to 
assimilate local changes to the subject without rescanning the entire tree. For bottom- 
up matching we achieve linear matching times, but preprocessing time may be 
exponential. To keep bottom-up preprocessing time polynomial, we need some 
additional constraints on patterns. For top-down matching we lower the preprocess- 
ing time to linear, with no restrictions on patterns, at the cost of a slight increase in 
matching time. The bottom-up method adapts more easily to changes in the subject. 

For the remainder of this paper, complexities will be expressed in terms of 

patno: the number of different patterns involved 
patsize: the size of the pattern forest 
subsize: the size of the subject tree 
sym: the number of symbols in the alphabet 21 
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rank: the highest rank (arity) of  any symbol in 1~ 
match: the number of matches which are found 

All suggested methods for tree matching should be compared to the naive algorithm 
(based on a simple form of unification), which merely tries every pattern at every 
position in the subject tree. The naive algorithm does no preprocessing but takes 
O(/oatsize x subsize ) matching time. 

3. The Bottom-Up Matching Algorithm 

The key idea of the bottom-up matching algorithm is to find, at each point in the 
subject tree, all patterns and all parts of  patterns which match at this point. Let n be 
a node in the subject labeled with the q-ary symbol b, and suppose we wish to 
compute the set M of all those pattern subtrees other than v which match at n in the 
sense of Definition 2.3. (Since v matches anywhere, we always have a match of v.) 
Suppose we have already computed such sets for each of the sons of  n, and call these 
sets, from left to right, M1 . . . . .  Mq. Then M contains v plus exactly those pattern 
subtrees b(tl . . . . .  tq) such that t, is in M ,  for 1 _< i _< q. Therefore we could compute 
M by forming trees b(6 . . . . .  tq) for all combinations ( t l ,  . . . ,  tq), where the t~ are 
chosen from M,, and then asking whether each candidate for membership in M is a 
subpattern. Once we have assigned these sets to each node in the subject tree, we 
have essentially solved the matching problem, since each match is signaled by the 
presence of a complete pattern in some set. 

Note that there can be only finitely many such sets M, because both Y. and the set 
of subpatterns are l'mite. Thus we could/orecom/oute these sets, code them by some 
enumeration, and then construct tables. Given a node symbol b and the codes of the 
M ,  these tables give the code for M. In the case of a q-ary symbol b, we would have 
a q-dimensional matrix for that symbol. 

Given such tables, the matching algorithm becomes trivial: Traverse the subject 
tree in postorder and assign to each node n the code c representing the set of partial 
matches at n as discussed. The tables consist of  arrays, one for each alphabet symbol. 
If  node n is labeled with the q-ary symbol b, then the q-dimensional array for b is 
used. The code c at n is the value indexed by the tuple (ct . . . . .  cq) where c, is the 
code assigned to the ith son of n (from the left). If  the set represented by c contains 
the pattern/o, then the pair (n, i) is added to the solution. 

The matching time of  this algorithm is clearly O(subsize) for computing all codes 
plus O(match) for listing the solution. The constant of linearity involves one array 
reference for computing the codes, a single test to determine whether a complete 
pattern match is present, plus the overhead for the postorder traversal. Note that the 
codes may be assigned so that all codes indicating matches are contiguous. The space 
requirements depend on the table size and are discussed in Section 4. 

Example 3. I. Consider a matching problem in which the patterns 

/Ol = a(a(v, v), b) and /o2 = a(b, v) 

are to be matched. Assume the alphabet 1~ is {a, b, c}, where a is binary and b and 
c are nullary symbols. For reasons to be explained later, of the thirty-two possible 
sets of pattern subtrees only the following five can arise as result of matching: 

Set 1 = (v}, 
Set 2 = {b, v), 
Set 3 = (a(v, v), v}, 
Set 4 = (a(b, v), a(v, v), v), 
Set 5 - (a(a(v, v), b), a(v, v), v). 
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Figure 3 
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Table for node label a. 

Right son 

Left son 1 2 3 4 5 

1 3 3 3 3 3 
2 4 4 4 4 4 
3 3 5 3 3 3 
4 3 5 3 3 3 
5 3 5 3 3 3 

Table for node label b' 2 
Table for node label c 1 

a3 

Figure 4 

J. O'DONNELL 

Thus, assigning a 4 to some node n of  a subject would indicate that each of  the 
members  of  Set 4 matches at n. In particular, pz matches. Assigning 5 implies a match 
of  pl .  

Figure 3 shows the tables for a, b, and c. For instance, the entry at (3, 2) in the 
table for a is 5, because at the left son we have a match of  both a(v, v) and v, and at 
the right son of  b and of  v. For  the nullary symbols b and c the tables are 
0-dimensional, consisting of  one entry each. 

Figure 4 shows the complete assignment of  codes when using the bot tom-up 
algorithm with these tables. Note that p l  matches at the node with code 5 and p2 at 
the node with code 4. []  

There is some similarity between bot tom-up matching and formal parsing methods 
such as LR(k)  parsing. In both cases a finite number  of  possible configurations are 
precomputed, and tables are formed to drive the pars ing/matching process. As with 
LR(k)  parsing, our tables will sometimes be very large, but we isolate a significant 
class of  problems in which the table size is kept small. 

When a local change is made to a subject tree, matching codes must be recomputed 
for the changed portion and some ancestors of  the changed portion. In Section 4 we 
see that the number  of  ancestors whose codes must be recomputed is bounded by the 
largest height of  a pattern. Note that in these ancestors new matches could appear  or 
old matches disappear. Thus it seems intuitively unlikely that any method could 
update with less recomputation. 

4. Pattern Relations and Match Sets 

We now turn to studying the sets o f  partial matches used in the bot tom-up matching 
algorithm of  Section 3. We begin by precisely defining these sets and deriving 
properties which we will later exploit in designing good preprocessing algorithms. 

Definition 4.1. Let F = (p l  . . . . .  pk} be a set o f  patterns in Sv and PF the set of  
all subtrees of  the p,. A subset M of PF is a match set for F if there exists a tree t in 
S such that every pattern in M matches t at the root and every pattern m PF - M 
does not match t at the root. 
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Note that if v is in PF, then v is in every match set. Observe also that the concept 
of match sets depends on the pattern forest F. 

Example 4.1. Consider the pattern forest F = {p,, p2}, wherep,  andp2 are as in 
Example 3.1. Then the set M = {a(b, v), a(v, v), v} is a match set because of the tree 
a(b, c). However, M '  = {a(b, v), v} is not a match set, because a match of  a(b, v) 
implies a match ofa(v,  v) at the same node. [] 

Observe that the set of all possible match sets contains all sets which the bottom- 
up matching algorithm could assign (in encoded form) in any subject tree, given the 
pattern forest F. 

Given F, let Match(t) denote the match set which must be assigned at the root of 
the subject tree t. PF is the set of  all pattern subtrees from F. We can now formally 
state the two properties on which the bottom-up matching algorithm is based. 

Definition 4.2 

(1) If  a is a nullary symbol, then 

_-~{a 'v}  if a is in PF, 
Match(a) 

t {v} otherwise. 

(2) If  a is q-ary, a > 0, then 

Match(a(t, . . . .  , tq)) - -  { v )  t_J {p'lp' has root a and is in PF, and for 
1 _ j _ q, sonj(p) is in Match(6)}. 

Note that because of (2), Match(t) does not depend on any node in t whose distance 
from the root exceeds the maximum height of  a pattern. Because of  this and the 
manner in which codes are assigned, the bottom-up matching algorithm responds 
well to local changes in a subject tree. See [15] for details. 

In principle, the required enumeration of  sets and tables may be generated by a 
simple closure strategy which starts with Match(a) for all nullary symbols a and 
repeatedly closes under the operation (2) of Definition 4.2. Such an algorithm would 
require 

O(set (rand+l) × sym x patsize) 

time, where set is the number of distinct match sets generated. The table size would 
be O(set rank x sym). In order to improve this time limit and to bound the size of set, 
which could be as bad as 0(2  pat .... ), we need to understand certain relations between 
patterns and members of match sets. We define the following relations on tree 
patterns. 

Definition 4.3. Let p and p '  be patterns in So. Then p is inconsistent with p '  
(written p U p') if there is no subject tree t in S with both p and p'  in Match(t). p and 
p '  are independent (written p ~ p)  if there are trees tl, t2, t3 in S such that p is in 
Match(h), p '  is not in Match(6), p is not in Match(t2), p '  is in Match(t2), and p and 
p '  are in Match(t3). p subsumes p '  (p >_ p') if, for all t in S, p in Match(t) implies 
that p '  is in Match(t). p strictly subsumes p '  (p > p ')  i fp  _ p '  andp  # p ' . p  < p '  iff 
p ' > p .  

Example 4.2. a(b, v)lla(c, v), since b and c cannot both be matched in the 
same position, a(b, v) - a(v, c), since a(b, v) in Match(a(b, b)), a(v, c) not in 
Match(a(b, b)); a(b, v) not in Match(a(c, c)), a(v, c) in Match(a(c, c)); a(b, v) in 
Match(a(b, c)), a(v, c) in Match(a(b, c)). Finally, a(b, v) > a(v, v). [] 
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Figure 5 
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p2---._...._ ~ p  p4 p5 pe 

Given distinct patterns p and p',  exactly one of  the relations ]l, ~, >,  and < must 
hold between p and p ' .  The elementary properties of  the three relations are summa- 
rized below. Note that in the absence of  variables distinct patterns must be incon- 
sistent. 

PROPOSITION 4.1. For trees pa, p2, p3 in Sv: 

(a) p~ > pz and pz > p3 implies p~ > p3; 
(b) p~ [Ip2 iffp2 Ilpx; 
(c) p, ~ p2 iff p2 ~ pl; 
(d) pl liP2 and p3 > p2 implies pl [[p3; 
(e) p l  ~ p2 and p2 > p3 implies px ~ p3 or pl > p3. 

Recall that M '  of  Example 4.1 is not a match set because a(b, v) subsumes a(v, v). 
The inclusion of  one pattern (e.g., a(v, v)) in M may be the consequence of  the 
presence of  another pattern which subsumes it (e.g., a(b, v)). Therefore, there may be 
a subset of  patterns in M which completely determines M. We partition each match 
set M into a set M0 of  pairwise independent trees and a set M~ of  trees subsumed by 
some tree in Mo. Mo is called the base of  M. 

PROPOSITION 4.2. Given a patternforest F and match set M for  F, there is a unique 
partition of  M into sets Mo and M~ such that for  distinct pl, p2 in Mo, pa ~ p2 holds, and 
for  each p '  in M~ there is a p in Mo such that p > p'.  

Observe that different match sets must have different base sets, owing to Proposi- 
tion 4.1a. Thus we may represent match sets by their base sets. 

Definition 4.4. Given a pattern forest F, the independence graph GI of  F is as 
follows: The vertices of  GI are distinct trees in PF. There is an undirected edge 
between p and p '  iff  p ~ p ' .  

Example 4.3. Consider the pattern forest F = {p~, p2, p3}, where p~ ffi 
a(b(b(v)),  v), pz = a(b(v),  b(v)), and pa = a(v, b(b(v))). There are three additional 
trees in PF: p4 = b(b(v)),p5 = b(v), and/ '6  = v. Since the trees pl, p2, p3 are pairwise 
independent, whereas no other tree pairs are, the independence graph G~ of  F is 
as shown in Figure 5, with a connected component p,, p2, p3 and three isolated 
points. []  

From the independence graph we can derive an upper bound on the number of  
possible match sets of  a given pattern forest. 

THEOREM 4.3. The number of  possible match sets o f  a pattern forest F is at most 
the number of  cliques in the independence graph Gi of  F, counting all subcliques, 
including the trivtal ones. 

This theorem follows easily from Proposition 4.2. To illustrate it, consider F of  
Example 4.3. The theorem would limit the number of  match sets of  F to ten, for G~ 
has six trivial cliques, three cliques of  size 2, and one clique of  size 3. We would thus 
expect six match sets w~th a base set of  a singleton, three match sets with base sets 
consisting of  two trees each, and one match set with a base set of  three elements. 
However, in this example there is no match set with the base {p,, p3}, since matching 
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both pl and p3 at the root implies that p2 matches at the root as well. Thus Theorem 
4.3 gives an upper bound only. For deriving exact limits we would need to introduce 
other structural properties and analyze relations between more than two patterns. 

For certain pattern forests the graphs GI could be such that the number of cliques 
grows exponentially with the number of subtrees in F and hence exponentially with 
the size of F. In such cases the number of distinct match sets may also grow 
exponentially. 

THEOREM 4.4. There are classes of pattern forests for which the number of distinct 
match sets grows exponentially with the size of the forest. 

PROOF. We define a class of balanced binary treesp~, 0 _ i, 0 _ j  _< 2 ~, of height 
i, with all interior nodes labeled a. In p j, all leaves are labeled v except the j t h  leaf 
from the left, which is labeled b. For j -~ 0, all leaves are labeled v. 

pO= v, 
pO= b, 

pj+~ = a(p~, p~), 0 <_j <_ 2', 
p~+~ = a(p~, p~-z,), 2' < j ~ 2 ~+1. 

Define the pattern forest Fn = (P,"l 1 <_ i ___ 2n}. The size ofF,, is O(2n). Furthermore, 
p,~ ~ p~' for distinct nonzero values o f t  and j. Now consider sets Q of  integers 
between 1 and 2 n, and define for each such set Q a balanced binary tree Po of height 
n with all interior nodes labeled a and such that the ith leaf from the left is labeled 
b if i is in Q, c otherwise. Then p," matches Po at the root iff i is in Q. There are2 zn 
such sets Q; thus there must be at least as many different match sets. [] 

As a consequence of Theorem 4.4, a preprocessing algorithm based on computing 
tables indexed by match sets to drive the bottom-up matching algorithm must be 
impractical in certain cases. Since independence among subpatterns in a forest is 
responsible for a possible exponential growth of the number of match sets, we 
conclude the section with a necessary condition for independence based on the 
structure of patterns. 

PROPOSITION 4.5. Let p, p '  be independent patterns. Then p contains disjoint 
nd t 2, in corresponding positions, subtrees ta and t2 and p ' contains disjoint subtrees t ~ a ' 

such that t~ > t'~ and t'z < t2. 

PROOF. Since v and nullary symbols in corresponding positions cannot be inde- 
pendent of other patterns, we may assume that 

p = a(pl . . . . .  pq), 
p '  = a(p'~ . . . . .  p'q). 

The proof is by induction on the height ofp. 

Basis. If  p has height 1, then the p,  have height O, thus are nullary symbols or v, 
and thus, for l <_ i <_ q, p, >_ p" or p[ >_ p,. If, for all i, p, ~ p[ (p" > p,), then 
p _> p '  (p '  ~ p). But p ~ p '  by assumption, and thus we can find the required trees 
among p, and p ' .  

Induction Steps. Assume that the proposition holds for al lp of height less than h, 
and assume that p has height h. Surely p, H P" cannot hold; otherwise p and p '  would 
be inconsistent. If  there is some i such that p, ~ p' ,  then apply the induction 
hypothesis top,  andp ' .  Otherwise, for all t, p, >_ p" orp" >_ p,,  and the argument of 
the induction basis completes the proof. [] 



78 C. M. HOFFMANN AND M. J. O'DONNELL 

Note that mutual subsumption, in opposite directions, of disjoint subtrees is 
necessary but not sufficient for independence, since it does not rule out the possibility 
that other subtrees are inconsistent. For example, a(b, v, c) and a(v, b, d) are 
inconsistent, yet there are disjoint subtree pairs satisfying the "only if" condition of 
Proposition 4.5. 

Proposition 4.5 is used when testing the restrictions imposed on tree patterns in the 
next section. 

We have recently learned that the idea of bottom-up tree pattern matching was 
discovered independently by Kron [23]. He calls match sets "batches" and defines 
the relations >, II, - (which he calls "more specific than," "not overlapping," and 
"intersecting," respectively) equivalently by containment and intersection properties 
of the sets of 52-terms which two patterns match at the root. 

He matches patterns in a subject tree using an automaton as well. Instead of using 
matrices as tables, however, he computes the match set to be assigned to node n with 
q sons by a subautomaton which, m q transition steps reading the match set codes of 
the sons, determines the code for the new match set. There is one subautomaton per 
alphabet symbol. As a result, his match time is O(subsize). One can visualize each 
subautomaton as a trie encoding of one of our matrices. Depending on the pattern 
structure, this leads to smaller space requirements in certain cases. 

The preprocessing of Kron is essentially the method sketched in the paragraphs 
following Definition 4.2. Because of Theorem 4.4, this preprocessing takes time 
exponential in the pattern size in the worst case. As Kron tells us, he was aware of 
this, but it was not a concern of his research in [23]. We are going further and 
analyzing match sets seeking a definition of a subclass of tree patterns with polyno- 
mial preprocessing time. We give such a definition in the following section. 

Preprocessing in Kron's sense has been used in practical situations by Wilhelm 
[10]. Since this work seems to accomplish practically viable preprocessing times, we 
conclude that the exponential worst case of bottom-up matching does not arise 
frequently in these applications. 

5. Simple Pattern Forests 
Because of the exponential growth of the number of match sets for certain pattern 
forests (Theorem 4.4), we wish to restrict patterns when generating tables to drive the 
bottom-up matching algorithm of Section 3. Theorem 4.3 suggests disallowing 
independence among pattern subtrees. This restriction is not as drasUc as it might 
seem and has not seriously hindered us when generating interpreters for LISP, 
LUCID, and the Combinator Calculus using these techniques [14]. 

Definition 5.1. A pattern forest F is simple if it contains no independent subtrees. 

For simple forests, the independence graph has no edges; hence, by Theorem 4.3, 
the number of distinct match sets is at most the size of the forest. Furthermore, simple 
forests have a number of useful properties which can be exploited in the design of 
efficient matching algorithms. 

Definition 5.2. If F is a pattern forest, and p, p '  are subpatterns in PF, then p 
immediately subsumes p', p >, p', i f fp  > p' and there is no other subpattern p" in 
PF such that p > p"  and p"  > p'. Immediate subsumption is the transitive reducUon 
of subsumption on the set of all subpatterns of F. 

Defimtion 5.3. The immediate subsumption graph Gs of the forest F has as vertices 
all distinct subpatterns in F. There is a directed edge from p to p '  iff p >, p'. In 
general, Gs is a directed acycllc graph with v as the only leaf. 
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LEMMA 5.1. The immediate subsumption graph Gs of  a simple forest F is an inverted 
tree with v as root. 

PROOF. Let p, p', and p"  be distinct subtrees in F, and assume that p subsumes 
both p '  and p ", but neither p > p"  nor p"  > p'. Since p subsumes both trees, p '  II p" 
is impossible (Proposition 4.1d); hence p '  and p"  must be independent. But then F 
cannot be simple. Hence either p'  > p"  or p"  > p'. [] 

Observe that for simple forests, the base set Mo of any match set must be a 
singleton. Using Lemma 5.1 and Proposition 4.2, we thus easily obtain 

THEOREM 5.2. Let F be a ample forest and M any match set for  F with base set 
{p}. Then M consists prectsely of  the trees encountered on the path f rom p to v in Gs. 

This theorem is the central result for simple forests. It frees us from having to 
construct explicitly the individual match sets, for Gs provides them at once along 
with their structure and interrelation. We conclude the section with an example 
illustrating Theorem 5.2, and a discussion of the relationship between Gs and the 
failure function f constructed in the algorithm for string pattern matching in [1, 21]. 

Example 5.1. The pattern forest F =  {a(a(v, v), b), a(b, v)} is simple, since there 
are no independent trees or subtrees. Its immediate subsumption relation is 

b >, v, a(v, v) >~ v, 
a(b, v) >~ a(v, v), a(a(v, v), b) >~ a(v, v), 

which has the graph Gs shown in Figure 6. From this graph we then obtain as 
possible match sets the five sets of Example 3.1: 

{v}, 
{b, v}, 
{a(v, v), v}, 
{a(b, v), a(v, v), v}, 
(a(a(v, v), b), a(v, v), v}. 

Note the correspondence of these sets to the paths in Gs. [] 

There is a connection between the immediate subsumption graph Gs and the 
failure function fu sed  in string-pattern-matching algorithms in [1, 21]. This connec- 
tion is observed by visualizing a string pattern ala2 ..  • am as the nonbranching tree 
am(. • • a2(al(v))...). Note the reversal of the character sequence. The addition of v as 
a leaf permits us to conceptualize the a, as symbols of arity 1 and permits sliding the 
nonbranching tree in the subject. Matching this pattern in the subject blb2 . . .  bn 
is now equivalent to matching the nonbranching tree pattern in the tree 
bn(.. ,  b2(b~(c)).. .),  where c is a new nullary symbol. Having translated the string- 
matching problem into a tree-matching problem in this way, we now observe that Gs 
is just the graph of the failure function f constructed for the original string problem 
by the algorithms in [1, 21]. To observe this, note that a subtree corresponds to a 
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pattern prefix, and that p > p '  iff p '  is a pattern prefix which matches, as suffix, in 
the pattern prefix p. Hence p >, p '  iff p '  is the longest proper prefix of p which 
matches, as suffix, in the prefix p, which is just the definition of the failure function. 

Note also that because of Proposition 4.5, pattern forests derived from string 
patterns must be simple, because nonbranching trees cannot have disjoint subtrees. 
Hence there is no counterpart in string matching to the exponential explosion of 
match sets, which can occur for nonsimple forests in tree matching. 

6. Table Construction for  Simple Forests 

For a simple pattern forest F, the tables to drive the bottom-up algorithm of Section 
3 may be constructed in two steps. First, construct the subsumption graph (~s whose 
vertices are the trees in PF. (~s has a directed edge fromp top '  i f fp  _ p'. Observe 
that this is equivalent to finding all match sets which can occur when matching in 
any subject. Then, for each alphabet symbol a of arity m, we use Gs to construct a 
table Ta such that Ta[p~ . . . . .  pm] is the match-set code which should be assigned to 
any node labeled a at whose sons we have assigned the match-set codes pl to pm 
from left to right, respectively. 

We fred it convenient to represent a match set M by its base set tree, that is, by the 
largest (in the sense of >) tree in M. This is a reasonable choice since, by Proposition 
4.2 and Theorem 5.2, the largest tree in M completely determines M. The advantages 
of this coding is that we can now define the entry Ta[pl . . . . .  pro] as the largest tree 
in PF subsumed by a(p1, . . . ,  pro), because of observation (2) below. Note that the 
tree a(pl  . . . . .  pro) need not occur in PF. 

To construct (~s, observe that for distinct patterns p, p', 

(1) I fp  > p', then height(p) _ height(p'). 
(2) Letp ffi a(p~ . . . . .  pro). Thenp > p '  iffeitherp' = v orp '  = a(pi  . . . . .  p'm), where 

p~_>p~for l<_j<_m.  

So we may process patterns in order of increasing height and compare each pattern 
to all patterns of no greater height using observation (2). Since the subpatterns p, and 
p" in (2) above are of strictly smaller height than p and p', respectively, p~ _ p~ has 
already been checked by the time p is compared to p'. 

Algorithm A 

Input: Simple pattern forest F. 

Output: Subsumpuon graph Gs for F. 

Method: 

I. List the trees m PF by increasing height 
2. Imtiahze (~s to the graph with vemces PF and no edges. 
3. For each p = a(p t  . . . .  pro), m >_ O, of height h, by increasing order of height, do 
4. for each p '  m PF of height _< h do 
5. I fp '  = v or 

p '  = a ( p i  . . . . .  p ' )  where, for 1 <__ l <_ m, p, ~ p" Is m Gs, 
then 

6 Addp--~ p '  to Gs. 

For the analysis of Algorithm A, observe that step 1 requires O(patsize) time using 
bucketsort. Steps 3-6 require O(patsize 2 x rank) steps, assuming that Gs is stored as 
an adjacency matrix, so that checking whether p~ --, pJ requires constant time. The 
space complexity is dominated by the O(patsize 2) adjacency matrix. Thus Algorithm 
A requires O(patsize 2 × rank) steps and O(patsize 2) space. 
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To generate the table T~, recall that for the m-ary symbol a and trees pl . . . . .  prn 
in PF, Ta[p~ . . . . .  pm] = p, where p is the largest (in the sense of  >)  tree in PF such 
that a(p~ . . . . .  pro) >-- p. This can be seen as follows. I fa(p~ . . . .  , pro) >-- t, then either 
t = v or t = a(p'~ . . . . .  p'm) and, for 1 ___ i <_ m, p, ___ p ' .  Then the set 

M = {t in PFla(p~ . . . . .  pro)-> t} 

is precisely the match set which should be coded by the entry T~[p~ . . . . .  pro], 
assuming p, codes the match set with base set tree p~. Recall that by Lemma 5.1 
subsumption induces a total order on the elements of M; hence the largest tree p in 
PF subsumed by a(p~ . . . . .  pro) is precisely the base set tree of  M and thus the code 
which should be assigned to T~[p~ . . . . .  pro]. 

Now observe that by (2), a(p~ . . . . .  pro) > p  is easily testable from t~s. Furthermore, 
if we process the patterns in PF in increasing order of  subsumption and for each p in 
PF assignp to all of  the entries T ~ [ p ~ , . . . ,  pro] such that a ( p ~ , . . . ,  pro) >- p, then the 
last assignment made to the entry will be the maximal subsumedp in PF. Thus, if we 
write each p into the appropriate table positions when p is processed, the final values 
in the table are the correct ones. 

Algortthm B 

Input. 0s  for a simple pattern forest F 

Output" Tables to drive the bottom-up matching algorithm T,[p~, , pro] wdl contain the largest (under 
subsumptlon) tree m PF which is subsumed by a(p~, .,  p,~) 

Method. 

1 List PF m increasing order of  subsumptmn by performing a topological sort on (~s 
2 lnmahze  all entries in all tables T~ to v 
3. For each pattern p = a(p~ . . . . .  pro) by increasing order of  subsumpuon  do 
4 For each m-tuple (p~, ,p'm) suchthat ,  for l <_ j <_ m, p~ >_ pj do 
5 T , [p l  . . . . .  p ' ]  := p. 

The table for the symbol a of  arity q has patstze q entries. Thus Algorithm B 
constructs no more than patsize rank × sym entries. When a tree p is assigned to an 
entry in Ta, then p belongs to the match set which should be coded by this entry. 
Thus the number of  repeated assignments to each entry cannot exceed the size of  the 
largest match set, that is, the height of Gs. Thus at most patsize rank × sym x ht 
assignments are done in step 5. 

Note that p '  ranges over those trees in PF such that p" ~ p,. Hence we can find 
the necessary tuples easily from the adjacency matrix of  Gs. In an implementation of  
this algorithm the patterns in PF are numbered, and the tables T~ are indexed by 
these numbers. We summarize the complexity of  preprocessing patterns in simple 
forests by the following. 

THEOREM 6.1. We can construct tables to drive the bottom-up matching algorithm 
in the case o f  simple pattern forest  in 

O(patsize 2 x rank + patsize r~nk × ht × sym) 

time and 

O(patsize 2 + sym + patsize rank) 

space. 

Note that it is easy to test whether a pattern forest is simple. Using Proposition 4.6, 
it suffices to test, in step 5 of  Algorithm A, whether p and p '  contain two (immediate) 
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TABLE I TABLE To GENERATED FOR THE SYMBOL a 

Right subtree match 
Left 
subtree match v b a(v, v) a(b, v) a(a(v, v), b) 
v a(v, v) a(v, v) a(v, v) a(v, v) a(v, v) 
b a(b, v) a(b, v) a(b, v) a(b, v) a(b, v) 
a(v, v) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v) 
a(b, v) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v) 
a(a(v, v), b) a(v, v) a(a(v, v), b) a(v, v) a(v, v) a(v, v) 

subtrees in corresponding positions which subsume each other in opposite directions. 
If such a pair exists, then the pattern forest is not simple. 

Example 6.1. We illustrate Algorithm B with the table Ta generated for the symbol 
a, given the pattern forest of Example 5.1. The table is essentially that of Example 
3.1; however, for readability we represent entries and index values by trees, rather 
than enumerating them. 

In this example, all table entries are assigned by step 5, so none of them is v. 
Consider p = a(a(v, v), b) in the traversal of step 3. The m-tuples of steps 4 and 5 
now range over the setsp~ in (a(v, v), a(a(v, v), b), a(b, v)}, since a(a(v, v), b) and 
a(b, v) are the two trees subsuming a(v, v), andp~ in {b}, since there is no other tree 
subsuming b. So a(a(v, v), b) is entered in Ta[a(v, v), b], Ta[a(a(v, v), b), b], and 
T~[a(b, v), b]. The entry Ta[a(v, v), b] had already been assigned the smaller pattern 
a(v, v), since a(v, v) > v and b > v, but this entry is wiped out by a(a(v, v), b) at this 
time. Table I shows the table T~. [] 

Clearly Algorithm B constitutes the bottleneck of preprocessing, both in space and 
in time requirements. Often the situation can be improved by introducing one or 
more pairing functions, thereby reducing rank to 2. Although pairing is always 
possible, it need not preserve simplicity of the forest and is thus of limited value. 

Example 6.2. Consider the pattern forest {a(b, v, c), a(v, b, d), a(e, c, v)}. All 
subtrees other than v are pairwise inconsistent, and thus the forest is simple. 
Introducing a pairing function, no matter which subtrees are paired, will introduce 
independence. For example, pairing the first and second subtree results in a new 
forest {a'(pair(b, v), c), a'(pair(v, b), d), a'(pair(e, c), v)} in which pair(b, v) and 
pair(v, b) are independent subtrees. [] 

There is a different approach to speeding up preprocessing. Recall that Gs 
generalizes the failure function of string matching. We suspect that there is an 
efficient bottom-up matching algorithm using Gs directly, without any tables. So far 
we have only achieved a running time of 

O(subsize x patsize × ht) 

by this approach, which is inferior to the naive method. 

7. Faster Preprocessing for Binary Simple Forests 

Algorithm A is quadratic inpatsize since it constructs (~s, the transitive closure of Gs, 
rather than Gs. It seems there should be an algorithm for computing Gs for simple 
pattern forests which requires O(patsize) steps only. So far, we have not found an 
algorithm this efficient, but in the special case of binary simple pattern forests we can 
construct Gs in O(patsize × ht 2) steps. Here ht may be as large as patsize, but it is 
usually much smaller. Given the algorithm for computing Gs, it is then possible to 
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adapt it to do the pattern matching as well, bypassing the expensive step of table 
generation. We sketch the idea of this algorithm next. 

Recall that in a simple forest F, for each subpattern p in PF there is exactly one 
largest subsumed subpattern p '  in PF, except when p = v. Let f (p )  denote this tree 
p', that is, the tree immediately subsumed by p. Denote the ith iterate o f f  by f ' (p  ), 
0 _ i, where 

fO(p)  = p, 

f '+~(p) = f ( f ' ( p ) ) .  

Note that Gs is the graph of the function f .  
Consider computing f (p ) ,  where the root of p is a binary symbol, that is, p = 

a(p~, p2). We should examine trees of the form a(f'(pl), fJ(p2)), i + j > 0, as possible 
candidates for f (p) .  For this purpose we will maintain sets S(a, pl), where a is in Z 
and px is a pattern subtree. Each set contains pairs (p2, p ) of subpatterns. The pair 
(p2, p) is in S(a, pl) i f fp  = a(pl, p2) is in PF. In computing f ( p )  we now probe in 
the sets S(a, pl), S(a, f(pa)), S(a, fZ(pl)) . . . .  for pairs whose first component is p2, 
f(p2), etc. The first such pair found (other than the pair ( p2, p ) in S(a, pl)) must be 
f (p) ,  since Fis  a simple forest. We make at m o s t  O(ht 2) probes, sincefnt(t) = v, for 
any subpattern. 

We can make a single probe efficiently by representing the set S(a, p~) by an array 
in which the second component of a pair is stored as the element indexed by the first 
component. In order to avoid an O(patsize 2) overhead for initializing all vectors, we 
use the constant time array initialization of [2, Ex. 2.12]. The running time of the 
algorithm is thus O(patsize × htZ). 

Observe that the algorithm can be adapted to do the matching using the sets 
S(a, p~) without using the table generation (Algorithm B). This leads to a matching 
algorithm which requires at most O(subsize x ht 2) steps. 

8. Top-Down Matching Algorithm 

Like the bottom-up matching algorithm, our top-down matching algorithm is related 
to the Knuth-Morris-Pratt string-matching algorithm. Instead of generalizing string 
matching, however, the top-down approach reduces tree matching to string matching. 
The top-down method has slower matching time than the bottom-up, but better 
preprocessing time. 

The key idea of reducing tree pattern matching to string matching is to regard 
each path from root to leaf in a tree as a string in which symbols in the alphabet are 
interleaved with numbers indicating which branch from father to son has been 
followed. Since variables always match, we do not include them in these strings. 

Example 8.1. The tree pattern a(a(b, v), c) is associated with the set of strings 
{alalb, ala2, a2c}. Note that we have omitted the symbol v from the end of the 
second string. Figure 7 shows how the set of strings appears in the given tree. [] 
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This idea was first noticed by Karp et al. [18] and used in a tree-matching algorithm 
with no preprocessing. Their algorithm achieved a matching time of 

O((patsize + subsize) x log(patsize)) 

for one pattern, which must be a full binary tree. For several patterns their algorithm 
would require 

O((patsize + subsize) x log(patsize) x patno). 

Our contribution is to show how, using the Knuth-Morris-Pratt  algorithm for 
string matching, we can improve the bounds to O(patsize) preprocessing, plus 
O(subsize x patno) for matching, in the case of patterns which are full trees. If  the 
patterns are not full trees, more time for matching is needed. We thus improve the 
bound of Karp et al. by a factor of log(patsize). 

For simplicity of presentation we develop our results for the case of a single tree 
pattern first. Given the pattern p, it is easy to generate all path strings for the root-to- 
leaf paths. We could then use the algorithm of Aho and Corasick [1] to produce an 
automaton which recognizes every instance of a path string within a subject tree. 
Since the combined length of all strings could be O(patsize2), we need to modify this 
construction so as to avoid generating the strings explicitly. In this way we can lower 
the preprocessing to O(patsize). 

The first step in the Aho-Corasick algorithm is to build a trie for the path strings 
of the tree pattern p. This trie is called the "goto function" in [1]. A trie is a tree 
whose nodes represent the distinct prefixes of the path strings. If  node n represents 
x and n'  represents xa, a in ~ t3 N, then n is father o fn ' ,  and the edge from n to n' 
is labeled a. We illustrate the construction with an example. Since it amounts to a 
simple tree transformation, we do not formally give an algorithm. 

Example 8.2. The pattern tree a(a(b, v), c) has the associated trie shown in Figure 
8. For example, the marked node represents the prefix a2. [] 

Informally, the the is constructed by first enumerating the outedges of  every 
pattern node and then splitting every node labeled with a symbol other than v into 
two nodes connected by an edge which is labeled with the original node label. 

The subsequent steps m constructing a matching automaton are exactly as in [1], 
for we are now dealing with a string problem. Thus the entire construction requires 
O(patsize) steps if we use a failure-function representation of  the automaton and 
O(patsize x sym) if we use a transition-matrix representation. 

We need to include in this construction a simple modification which records, with 
each accepting state of the automaton, the length(s) of the accepted string(s). The 
length of a path string is the number of alphabet symbols in it (numbers are ignored). 
Thus the length for a2c and ala2 is 2 in both cases. 
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FIo.  9 (a) Pa t te rn  (b) M a t c h i n g  au tomaton .  

Example 8.3. In Figure 9 we give the automaton associated with the pattern of  
the previous example. Accepting states are circled twice and are labeled with the 
length of  the accepted path string. [] 

We now have to solve the problem of  how the matching algorithm can decide 
whether two different path strings begin at the same node and thus contribute to a 
pattern match at that node. For this purpose we associate with each node a counter, 
initialized to zero. Each counter will record the number of  distinct root-to-leaf paths 
which match beginning at that node. 

Let us traverse the subject tree t in preorder, computing the automaton states as we 
visit nodes and traverse edges. For recovering former states when returning from a 
completely traversed subtree we can use the traversal stack. Every time the matching 
automaton enters a final state, we have matched one or more path strings, and we 
should indicate this fact at the points at which the matched paths begin. So we 
increment the counters of  those nodes by 1. The traversal stack for the preorder 
traversal is kept in an array. Thus we can fmd the beginning node of  a matched path 
string in the traversal stack and can access it in constant time once we know the 
length of  the matched string. 

At the end of  the traversal the pattern matches at each node whose counter equals 
the number of  leaves in the pattern (i.e., the number of  path strings). We can now 
give the matching algorithm. 

We will use an array of  triples (n, s, j )  as traversal stack, where n is a node in the 
subject tree, s the state the automaton has entered when the traversal visits n, and j 
a number indicating how many sons of  n have been visited. Additionally, we have an 
array Count, indexed by nodes n of  the subject tree, which contains the associated 
counters. 
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W e  a s s u m e  tha t  the  a l g o r i t h m  uses  a t r a n s i t i o n - t a b l e  r e p r e s e n t a t i o n  o f  the  a u t o m -  

a t o n  a n d  ind ica t e  b y  A Is, c] the  state the  a u t o m a t o n  en te r s  w h e n  in  state s r e a d i n g  
s y m b o l  c. 

W e  use  a p r o c e d u r e  Tabulate, w h i c h  m a i n t a i n s  the  c o u n t e r s  a n d  u p d a t e s  the  list o f  
m a t c h e s  found .  T h i s  p r o c e d u r e  c a n  access the  s tack  o f  tr iples.  

Algorithm D (Top Down Matchmg) 

Input A string matching automaton for tree pattern p m transition matrix representation, and a 
subject tree t. 

Output. A hst, Match, of all nodes in t at which p matches. 

Comment. A Is, c] is the state entered from s under input c m the matching automaton. 
Stack[t] ~ denotes the ah component of the triple stacked at position t m the array Stack 
son,(n) denotes the zth son of tree node n 

Method: 
1 Match := empty, 
2 For all nodes n m t do Count[n] = 0, 
3 Nextstate = A [start state, label(root of t)]; 
4. Top '= l, 
5 Stack[Top] = (root oft, Nextstate, 0), 
6. Tabulate(Nextstate), 
7. While Top > 0 do begin 
8 (Thisnode, Thisstate, Nsons) .= Stack[Top], 
9. If Nsons = anty(Thisnode) then Top = Top - 1, 

10. else begin 
11 Nsons '= Nsons + 1, 
12. Stack[Top].3 .= Nsons; 
13. Intstate = A[Thlsstate, Nsons], 
14. Tabulate(Intstate); 
15. Nextnode = sonNBo~(Thisnode), 
16. Nextstate '= A [lntstate, label(Nextnode)], 
17. Top .= Top + 1, 
18. Stack[Top] = (Nextnode, Nextstate, 0), 
19. Tabulate(Nextstate), 
20. end (if) 
21 end (while) 

Procedure Tabulate (State) 
I. For all s such that State has a match of length s 
2. do begin 
3 n = Stack[Top - s + 1].1; 
3 Count[n] .= Count[n] + 1, 
4 If Count[n] = number of leaves in pattern then 
5 Add n to Match, 
6 end (for) 

Excep t  for  the  w o r k  o f  p r o c e d u r e  T a b u l a t e ,  the  c o m p l e x i t y  o f  A l g o r i t h m  D is 
O(subsize), s ince each  edge is t r ave r sed  at mos t  twice. T h i s  is also t rue  for the  fa i lu re -  
f u n c t i o n  r e p r e s e n t a t i o n  o f  the  m a t c h m g  a u t o m a t o n  (see [1]). T h e  to ta l  w o r k  o f  
p r o c e d u r e  T a b u l a t e  is p r o p o r t i o n a l  to the  n u m b e r  o f  t imes  a n y  c o u n t e r  has  b e e n  
i n c r e m e n t e d ,  o r  equ iva l en t ly ,  to the  s u m  o f  al l  c o u n t e r  va lues  u p o n  c o m p l e t i o n  o f  
the  t raversal .  W e  c a n  es t ima te  this  s u m  b y  d e r i v i n g  a b o u n d  o n  the  n u m b e r  o f  
d i f fe ren t  c o u n t e r s  w h i c h  c a n  be  i n c r e m e n t e d  in  a n  accep t ing  state,  for  this  wil l  also 
b o u n d  the  w o r k  d o n e  for  each  cal l  o f  the  p rocedure .  

Definition 8.1. G i v e n  a tree p a t t e r n p  a n d  a p a t h  s t r ing  s o f  p,  the  suffix number 
o f  s is the  n u m b e r  o f  p a t h  s t r ings  s o f p  w h i c h  are suffixes o f  s, i n c l u d i n g  p itself. T h e  
suffix index o f p  is the  m a x i m u m  suffix n u m b e r  o f  the  p a t h  s t r ings  o f p .  
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Equivalently, the suffix index is the largest number of  counters which could be 
incremented in any accept state of  the automaton. 

Example 8.4. For the pattern p = a(a(a(v, b), c), b) we have the path strings 
alalal ,  alala2b, ala2c, a2b. The suffix number of  ala la l  is 1, whereas the suffix 
number of  alala2b is 2, since a2b is a suffix which occurs as root to leaf path in p. 
The suffix index o f p  is also 2. [] 

THEOREM 8.1. Algorithm D requires O(subsize x suf) steps, where suf is the suffix 
index of  the pattern to be matched. 

For patterns which are full trees, that is, all path strings are of  equal length, suf 
must be 1, since a distinct path string sl can be a proper suffix of  a distinct path 
string s2 only if sl is shorter than s2. This gives us 

COROLLARY 8.2. I f  Algorithm D matches a pattern which is a full tree, then only 
O(subsize) steps are needed. 

In the worst case, sufcould be O(patsize). 

Example 8.5. Consider the pattern, 

pk = a(a(.., a (v, b) . . .  b), b). 

k times 

Its suffix index is k, owing to the path string (al)k-la2b, which has every shorter path 
string as suffix. Note that patsize is 2k + 1. [] 

COROLLARY 8.3. The bound of  O(subsize x patsize) for  Algorithm D is attained 
for  certain patterns. 

PROOF. Consider matching the pattern pk of Example 8.5 in the subject, 

tn = a(a(.., a (c, b) . . .  b), b), 
J 

n times 

where n = k + m. Then the sum of  the counter values in tn after Algorithm D has 
finished exceeds m × k. Note that patsize is 2k + 1 and subsize is 2n + 1. [] 

We thus have in Algorithm D a performance range anywhere between that of  the 
bottom-up algorithm and that of  the naive matching algorithm, depending on the 
structure of  the pattern. 

Without going into details we note that Algorithm D may be adapted to assimilate 
local changes in the subject tree. As in the case of  the bottom-up algorithm, we need 
to reprocess only a small area surrounding the part which has changed. However, the 
algorithmic details are far more complicated than in the case of  the bottom-up 
algorithm, although in principle quite straightforward. 

We conclude this section with a brief discussion of  how to match more than one 
tree pattern, using the approach of  Algorithm D. 

Recall that we represent a tree pattern by its root-to-leaf path strings. We can do 
this for several patterns as well, but we should keep track of  which pattern(s) each 
path string comes from. The preprocessing algorithm can be adapted to process 
several patterns by building separately for each pattern the associated trie and then 
merging these tries, keeping track of  which pattern(s) each path string at a leaf of the 
trie belongs to. This can be done in O(patsize) steps resulting in a trie of  O(patsize) 
nodes. Now apply the methods of  [1] to complete the trie to a matching automaton. 
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In the case of a single pattern we associated with each of the final states a list of the 
lengths of the matched path strings. For multiple patterns we now associate with 
final states lists of pairs. Each pair gives the length of the matched path string and 
the pattern to which it belongs. 

It remains to explain how we can correlate matches of individual path strings. We 
do this simply by associating patno counters with each node in the subject tree and 
dedicating the ith counter to counting how many path strings of the ith pattern have 
been matched, beginning at that node. If the ith counter reaches a value equal to the 
number of leaves of the ith pattern, then we have just matched the ith pattern. 

As before, the work is proportional to the subject size plus the sum of all counter 
values and can be estimated as 

O(subsize × max(suf) x patno), 

where the maximum is taken over all tree patterns in the forest. This bound is easily 
shown to be the best possible, generalizing Corollary 8.2. Furthermore, if no path 
string is a suffix of another, then we have only O(subsize) steps for matching such a 
pattern forest. 

9. Improvements to Top-Down Matching and Related Work 

Recently, Lang et al. [24] improved Algorithm D by basing the matching of path 
strings on the Boyer-Moore algorithm [4]. Since the Boyer-Moore algorithm requires 
the ability to skip portions of the subject string, a different representation of trees is 
used: Trees are represented by ordered lists of left paths. 

Example 9.1. For the tree t = a(b(c), a(d, c)) the list of left paths is (abc, ad, c), 
as shown in Figure 10. [] 

We can obtain left paths by first deleting from each path string the longest prefix 
ending with a branch number greater than 1 and then deleting the remaining branch 
numbers. Thus, from a2aldwe obtain ad, and from a2a2c we get c. The list of these 
left paths uniquely determines a binary tree. For alphabet symbols of arity higher 
than 2, additional information has to be given for each left path string. 

The algorithm first preprocesses the list of left paths of the pattern, constructing a 
Boyer-Moore-type automaton for recognizing the first left path, combined with an 
Aho-Corasick-type automaton for recognizing the remaining left paths. A match of 
the remaining left paths is attempted only at places at which the first left path has 
been completely matched. Note that the advantages of the Boyer-Moore machine 
diminish as the number of different strings to be matched increases. See [8] for a 
discussion of this phenomenon. The subject tree is also represented as an ordered list 
of (linked) left paths, so that we can skip ahead for the Boyer-Moore matching 
technique. 

A subtlety of the algorithm, when it is applied to trees of arity exceeding 2, arises 
from the fact that a match of the j th  left path implies an update of the appropriate 
counter only if the counter has a specific value, because the left path may be 
descending from a node with more than two sons. For details see [24]. 
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Lang et al. [24] implemented both their algorithm and our Algorithm D. First 
experiments seem to indicate a sublinear average matching time for their algorithm. 
The worst-case performance of their algorithm is the same as that of Algorithm D. 

Overmars and van Leeuwen [27] have given algorithms to match lexicographic 
trees, that is, trees in which the branches rather than the nodes are labeled with 
symbols from an alphabet. They assume that the branches emanating from each 
node are ordered left to right by their labels and that no label occurs more than once. 
Lexicographic trees arise as tries. 

Overmars and van Leeuwen consider matching a given lexicographic tree (the 
pattern) in a larger lexicographic tree (the subject). A match is an alignment of the 
pattern nodes with certain subject nodes. The alignment must respect the father-son 
relation in such a way that the branches emanating from a subject node are labeled 
with the same symbol as the corresponding pattern branches. Note that not all 
branches of a subject node need to be covered by corresponding pattern branches. 

Their algorithms were discovered independently from our work. Their technique, 
like our Algorithm D, is based on Karp et al.'s idea of matching path strings. In the 
case of lexicographic trees, however, no branch numbers need to be interleaved in 
path strings. Overmars and van Leeuwen also use counters to coordinate the matches 
of path strings. 

Their best algorithm does preprocessing of the pattern similar to ours, identifying 
for each path string the suffixes which are also path strings. They give the prepro- 
cessing in their own terminology, but it amounts essentially to the algorithms of [1]. 
Their best matching algorithm has the same worst-case time bound as our Algorithm 
D. Other algorithms given in [27] do little or no preprocessing of the pattern and 
have inferior bounds on the matching time. 

We wish to stress that the approaches of Algorithm D, Overmars and van Leeuwen, 
and Lang et al. are inherently limited by using counters for deciding whether there 
is a match. As long as counters are used and incremented in steps of one up to the 
number of leaves of a pattern, a simple counting argument shows that the bound of  
Theorem 8.1 cannot be improved except by a constant factor. We see only two ways 
for improving this situation. Either means are found to increment counters in larger 
steps (or, equivalently, to smaller values) or a new method for coordinating path 
strings is used. The former would imply that recording of matches is delayed in some 
way. For the latter approach we can offer a solution which reduces the worst case 
bound to O(subsize + match). 

Assuming a machine model in which, in constant time, we can perform bit-string 
operations of union, intersection, and right shift by one position, we can improve 
Algorithm D as follows. We associate with each node n of  the subject tree a bit string 
bn in which the ith bit (from the right) is 1 iff every path from the ancestor of n at 
distance i, through n, to every descendant of n, has a prefLx which is a path string of  
the pattern we wish to match. Note that we do not need to use bit strings longer than 
the height of the pattern. There is a match of the pattern at node n iff bn has a 1 in 
the rightmost position. 

Example 9.2. Consider the tree pattern a(a(b(v), c), a(v, v)). Assume we wish to 
match it in the subject fragment shown in Figure 11. We should assign the bit string 
100 to node 3, since we have a match of the path string alalbl,  and also to node 4, 
because of the path string a 1 a2c. Note that both path strings are of length 3. To node 
5 the bit string 010 is assigned, because the two path strings a2al and a2a2 match, 
both of length 2. To node 2 we assign the bit string 010, since every path originating 
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FIG 11 (a) Pattern (b) Subject. 
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(b) I a /  
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at node 1, the ancestor of node 2 at distance 1, and going through node 2 has a prefix 
which is a path string in the pattern. Note that 010 can be obtained as the right shift 
by one of (100 n 100), the intersection of the two bitstrings assigned to the two sons 
of node 2. Node 1 will be assigned the bitstring 001. The 1 at the extreme right 
signals the presence of a pattern match. [] 

Note that in this example bit strings of length 3 are used, since the length of the 
longest path string in the pattern is 3. We need to explain how these bit strings can 
be computed. During preprocessing we associate with each accepting state s a bit 
string b, in which the ith bit is 1 iff a path string of length i is accepted. By carefully 
considering the techniques of [1] we can design this preprocessing step to require 
O(patsize) time at most. 

Traverse the subject tree in preorder as before. When reaching a node for the first 
time in the traversal, initialize bn to bs, where s is the corresponding state in the 
matching automaton. Then, when coming to n for the last time, that is, after all 
subtrees have been visited, update bn by 

bn := bn O n rightshift(b~on,(~)), 
J 

where riglitshift means a shift by one bit position to the right, introducing 0 on the 
left. This method then has, as worst case, O(subsize + match) time requirement for 
matching, since we eliminated the work of procedure Tabulate. 

Note that we need not associate bit strings with nodes permanently: Upon 
completing the traversal of a subtree rooted in n, the bit strings associated with the 
sons of n are no longer needed. Thus we may keep all bit strings in the traversal stack 
(plus rank additional cells). Similarly, we could have reduced the space requirements 
for Algorithm D by keeping the counters on the traversal stack. 

10. Bottom-Up Matching with Bit-String Operations 
I 

Since most computers allow unions, intersections, and complements of sets r~pre- 
sented as bit strings to be performed in a small fixed number of instructionS, we 
explore the possibility of representing match' sets by bit strings and computing them 
directly at match time, thus avoiding the costly table generation of Section 6. 

Let F be a pattern forest and PF the set of all subpatterns in F. 

Definition 10.1. Define the sets Ua for each a in the alphabet as follows; 

[(v} if a is nullaryand not in PF, 
Ua = ~ {a, v} if a is nullary and in PF, 

l { t i n P F l t = a ( t x , - . . , t q ) } U ( v )  if a isq-ary, q > 0 .  

Furthermore, define a set valued function on pattern sets by 

Father,(M) = {t' in PFlson,(t' ) in M}. 
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We now recast Definition 4.2 as 

Definition 10.2 

(1) Match(a) -- Ua if a is nullary. 
(2) Match (a(tl . . . . .  tq)) = (Ua O Fatherl(Match(tl)) O . . .  O Fatherq(Match(tq))) 

u (v}. 

Part (2) says that the subpatterns which match at a(tl . . . . .  tq) are exactly v plus 
those trees within Ua whose sons match the tl . . . . .  tq. A table for the sets Ua is easily 
precomputed in a single pass over the patterns in F in O(patsize) time and O(sym) 
additional space. Now, if we can find a simple way to compute Father,(M), we may 
assign match sets in bit-string form to each node of the subject in a simple postorder 
traversal of the subject tree. 

A direct computation of Father,(M) seems to require a loop through all subpatterns. 
We suggest therefore a hashing approach. We precompute a hash table for all match 
sets and store Father,(M) for 1 <_ i <_ rank at the table entry for M. Such a table 
consumes O((set/load) x rank), where load is the loading factor of the hash table, 
compared to O(set rank × sym) for the tables described in Section 4. 

Given a hashing function for the M, the precomputation of Father,(M) in the most 
straightforward way takes time 

O(set x rank × patsize). 

In time O(set x patno) we can add to each entry M a list of  indices i such that the 
entire pattern p, is in M. This list allows us to detect matches immediately from the 
match sets. The only additional problem is how to choose a suitable hashing function. 
Since we deal with a fixed forest of tree patterns, we would like to derive "perfect" 
hashing functions [32], that is, hashing functions which have no collisions on the set 
of keys. For this, we offer two alternatives. 

In the case of simple pattern forests, we take advantage of the results of  Section 5, 
which showed that all match sets have singleton base sets. We enumerate the patterns 
in PF in increasing order of subsumption, for example, a depth-first numbering of  
Gs. In this way the base-set subpattern is always represented by the leftmost nonzero 
bit in the string representation of the set. Since different match sets have different 
base sets, they must have different numbers of leading zeros. Our hashing function 
now simply counts the leading bits, thereby achieving a perfect minimal hashing 
function. Note that a practical implementation of this is possible, since on most 
computers there is an instruction to normalize floating-point numbers, which involves 
counting leading zero bits. 

For nonsimple forests the work of Sprugnoli can be used [32]. His algorithms 
derive a perfect hashing function using multiplication, addition, and division, but the 
function does not guarantee a high loading factor. Unfortunately, there is no analysis 
of his algorithms, so the exact space and time bounds are not known. Further 
research is needed to investigate whether there are special properties of match sets 
which lead to minimal perfect hashing functions which can be derived in a reasonable 
amount of time. 

Bit-string representation of match sets offers another advantage. Recall that the 
number of match sets may be exponential in the pattern size. Therefore we should 
control the table size in those cases. This is possible with the following observation 
about the Father function: 

Father~(M1 U M e )  - -  Father,(Ml) U Father,(M~). 
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Thus we may partition the set PF into a fLxed, chosen number part of  blocks 
P~ . . . . .  Ppart and represent each match set M by the tuple, 

( M A  P1, M A P2 . . . . .  M A Ppart). 

Then (l) and (2) of  Definition 10.2 become 

(l ' )  Match(a) n Pj = Ua n Pj. 
¢1 t~'a~t Fatherl(Match(tl)) n Pk} n n (2') Match(a(6, . . . ,  tq)) n Pj = (U~ n t,-,k=~ " "  

{u~r~tFatherq(Match(tq)) n Pk} u {v}) n Pj. 

For the analysis, let set, be the number of match set segments in the ith partition 
block P,: 

set, = [ {Match(t) n P,[t in S} I. 

We can then express the table size as 

set1 + . . .  + set, art 
o \l ad x 

and the matching time as O(subsize × part + match). 
For the case where set is nearly 2 "at .... and the partition sizes I P,[ are each 

approximately equal, that is, patsize/part, the table size may be expressed as 

f part . 2Pats t ze /par t  x -[- patno) ) .  0 \ ~ - ~  7, (rank 
I 

This formula gives a good idea of  the space-time trade-off involved. Given a set of  
patterns, the problem of choosing a good partition is as yet unexplored. Since it may 
lead to a clique problem (Theorem 4.3), it can perhaps only be approximated. 

11. Conclusions 

Table II summarizes the time and space complexities for the preprocessing and 
matching techniques we have discussed. The trade-offs are so complex that we cannot 
choose an all-round best method. Each of  the techniques offers some strengths and 
has certain weaknesses. 

As in the case of sorting, users of  tree-matching algorithms must choose a strategy 
carefully, on the basis of  special properties of  the patterns and subjects involved, the 
number of  different subjects expected (and their relationship, if any) for the same set 
of  patterns, and the available time and space resources. 

We note that our top-down algorithm is always better than the one of  Karp et al. 
[18] and as good as the one of  Overmars and van Leeuwen [27], although they have 
a different notion of  matching in mind. It is only in especially space-limited situations 
that the naive matching algorithm should be chosen. The version of  Lang et al. [24] 
might be an interesting alternative, but further experimentation seems necessary to 
understand better what practical advantages it has to offer. 

For the quickest matching time, the bottom-up algorithm, driven by tables, is best. 
We have used it in our interpreter generator and feel that for this application, the 
additional matching speed justifies the added preprocessing ume, as long as the table 
size stays reasonable. Our experience with the algorithm is confirmed by the work in 
[10]. When too many match sets are expected, we suggest the bit-string and hash- 
table methods which trade off space and time very flexibly. 
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