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Abstract 

Zhang, K., R. Statman and D. Shasha, On the editing distance between unordered labeled trees, Information Processing 

Letters 42 (1992) 133-139. 

This paper considers the problem of computing the editing distance between unordered, labeled trees. We give efficient 

polynomial-time algorithms for the case when one tree is a string or has a bounded number of leaves. By contrast, we show 

that the problem is NP-complete even for binary trees having a label alphabet of size two. 

Keywords: Computational complexity, unordered trees 

1. Introduction 

Unordered labeled trees are trees whose nodes 
are labeled and in which only ancestor relation- 
ships are significant (the left-to-right order among 
siblings is not significant). Such trees arise natu- 
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rally in genealogical studies, for example, the 
genetic study of the tracking of diseases. For 
many such applications, it would be useful to 
compare unordered labeled trees by some mean- 
ingful distance metric. The editing distance met- 
ric, used with some success for ordered labeled 
trees 121, is a natural such metric. This paper 
presents algorithms and complexity results for a 
wide spectrum of assumptions concerning this 
problem. 

2. Definitions 

The definitions 
* * Email: shasha@ca.nyu.edu. those for ordered 
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below are similar in style to 
labeled trees in [6]. We will 

133 



Volume 42, Number 3 INFORMATION PROCESSING LETTERS 25 May 1992 

omit the proofs for Lemma 1 and Theorem 1 
since they are similar to those in [6] and can be 
found in (71. 

2.1. Editing operations and editing distance he- 
tween unordered labeled trees 

We consider three kinds of operations. Chang- 
ing a node n means changing the label on n. 
Deleting a node n means making the children of 
n become the children of the parent of n and 
then removing II. Inserting is the complement of 
deleting. This means that inserting n as the child 
of m will make n the parent of a subset (as 
opposed to a consecutive subsequence [6]) of the 
current children of m. 

We represent an edit operation as a + b, 
where a is either A or a label of a node in tree T, 
and b is either 4 or a label of a node in tree T,. 
We call a + b a change operation if a f ‘4 and 
b # 11; a delete operation if b = 11; and an insert 
operation if a = A. 

Let S be a sequence s,, . . , sk of edit opera- 
tions. An S-derivation from A to B is a sequence 
of trees A ,,,..., A, such that A =A,,, B=A,, 
and A,_, +A, via s, for 1 <i< k. Let y be a 
cost function which assigns to each edit operation 
a + b a nonnegative real number y(a + 6). 

We constrain y to be a distance metric. That 
is, (i) y(a + b) 2 0, y(a -+ a) = 0; (ii) y(a --) 6) = 
y(b + a); and (iii> y(a --) c) < y(a + b) + y(b + 

C>. 
We extend y to the editing operations se- 

quence S by letting y(,S> = C’;‘=i ,y(s,). Formally 
the distance between T, and T2 is defined as: 

6(T,, T2) = min,(y(S) 1 S is an edit operation 
sequence taking T, to T,}. 

6 is also a distance metric according to the 
definition of y. 

2.2. Mappings 

The edit operations give rise to a mapping 
which is a graphical specification of what edit 
operations apply to each node in the two un- 
ordered labeled trees. 

Suppose that we have a numbering for each 
tree. Let T[i] be the ith node of tree T in the 
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given numbering. Formally we define a triple 
(M,T,, T,) to be a mapping from T, to T2, where 
M is any set of pair of integers (i, j) satisfying: 

(1) l,<i< IT, I, l<j< ITJ; 
(2) for any pair of (i,, j,) and (i,, j,) in M, 

(a) i, = i, iff j, = j, (one-to-one), 
(b) T,[i,] is an ancestor of T,[i2] iff T2[ j,] 

is an ancestor of T,[j,] (ancestor order 
preserved). 

We will use M instead of (M, T,, T,) if there 
is no confusion. Let M be a mapping from T, to 
T2. Let I and J be the sets of nodes, in T, and 
T2, not in M. Then we can define the cost of M: 

Y(M) = C y(T,[il + WI) 
(I, j)EM 

+ c y(T,[il --) 11) 
it/ 

+ c ~(14 - T2[jl). 

jGJ 

The relation between a mapping and a se- 
quence of editing operations is as follows: 

Lemma 1. Giclen S, a sequence s,, . . . , sk of edit 
operations from T, to T2, there exists a mapping M 

from T, to T, such that y(M) < y(S). Conr!ersely, 
for any mapping M, there exists a sequence of 
editing operations such that y(S) = y( M ). 

Theorem 2. 6(T,, T,) = min,(y(M)l M is a map- 
ping from T, to T,}. 

3. Algorithmic results 

In this section, we first study the problem of 
finding the editing distance (a minimum cost 
mapping) between a string and an unordered 
tree; and then between an unordered tree with k 
leaves and a general unordered tree. 

For the purpose of numbering the nodes in an 
unordered tree, we can take any ordering of the 
tree. That is, we first fix an arbitrary order among 
the children of each interior node of the un- 
ordered tree, yielding an ordered tree T. We will 
then use a postorder numbering of the nodes in 
T. In the intermediate steps of our algorithm, we 
may have to consider unordered forests. We note 
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that the definition of mappings for unordered 
forests is the same as for unordered trees. 

Define the out-degree of a node in a given tree 
to be the number of children of the node. We 
then define the degree of a tree to be the maxi- 
mum out-degree of any of its nodes. A string can 
be considered to be a degree one tree. 

3.1. Notation 

Let T[i] be the ith node in the tree according 
to the left-to-right postorder numbering of tree 
T. Let f(i) be the number of the leftmost leaf 
descendant of the subtree rooted at T[il. When 
T[i] is a leaf, f(i) = i. T[l(i)..i] is the unordered 
forest resulting from removing T[i] from the sub- 
tree rooted at T[i]. The distance between 
T,[l(i)..i] and T,[l(j)..j] is denoted by dist(i, j>. 
If i or j is zero it represents the empty tree. We 
use d(i, 0) to represent y(S[il + A), d(0, j> to 
represent y(A + T[ j]), and d(i, j) to represent 

r(S[il + T[jl>. 

3.2. Algorithm for the editing distance between a 
string and a tree 

The tree will be denoted by T. We will refer to 
the string as S and assume that it represents the 
sequence a,a2.. . a,. In the postorder representa- 
tion, S[l] represents a,, S[n] represents a ,, and 
in general S[i] represents an -;+ ,. That is, the 
postorder numbering reverses the order of the 
string. This implies that S[l(i)..i] = S[l..i] repre- 
sents a,a,_, ...a,,pj+,. 

With these preliminaries out of the way, we 
can now present a few lemmas and then the 
algorithm. 

Lemma 3. The relatiL)e order among siblings of T 
does not influence the editing distance between S 
and T. 

Proof. By the ancestor-descendant constraint on 
mappings, we know that, in the best mapping 
between S and T, S can be mapped only to a 
path of T from the root to a leaf. All other nodes 
of the tree must be inserted. Since leaf-to-root 
paths are preserved by different orderings of T, 
the order of T does not matter. 0 

This lemma implies that we can solve this 
problem by the algorithm of Zhang and Shasha 
[6] for ordered trees by fixing an arbitrary order 
for T. The time complexity will be 0( 1 S 1 . 1 T 1 . 
depth(T)). In the following we show that this can 

be improved to O(lSl. ITI). 
Assume that T[ j] has k 2 0 children, T[ j,l, 

T[j,l,. . . , T[j,l. 

Lemma 4. (1) dist(0, 0) = 0. 
(2) dist(i, 0) = d(i, 0) + dist(i - 1, 0). 
(3) dist(0, j> = d(O, j> + Ck= ,dist(O, t;>. 

Proof. Statements (1) and (2) are obvious. As for 
(3), insertion of subtree is equivalent to the 
insertions of subtree( j,), . . , subtree( jk), and then 
the insertion of root T[ jl. 0 

Lemma 5. If T[ j] has no children, then 

I 

dist(i- 1, j) +d(i, 0) 

dist(i, j) = min dist(i, 0) + d(0, j) 

dist(i- 1, 0) +d(i, j). 

Proof. Consider the best mapping between S[l..i] 
and T[j]. We have three cases. 

(1) S[i] is not in the best mapping. Then 
dist(i, j) = dist(i - 1, j) + d(i, 0). 

(2) T[ j] is not in the best mapping. Since T[ jl 
has no child, dist(i, j> = dist(i, 0) + d(0, j>. 

(3) Both S[i] and T[j] are in the best map- 
ping. Then by the definition of mapping S[i] and 
T[ j] must mapped to each other. Therefore, 
dist(i, j) = dist(i - 1, 0) + d(i, j). 

The lemma follows. 0 

Lemma 6. Zf T[ j] has k > 1 children, then 

‘dist(i - 1, j) + d(i, 0) 

dist(O, j) 

+ & {dist(i, j,) 

dist(i, j) = mint -d&(0, j,)} 

d(i, j) +dist(O, j) -d(O, j) 

+ Fir {dist(i - 1, j,) 

\ -dist(O, j,)}. 
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Proof. Consider the best mapping between S[l..i] 
and T[[(j).. j]. Again we have three cases. 

(1) S[i] is not in the mapping. Then dist(i, j> 
= dist(i - 1, j> + d(i, 0). 

(2) T[ j] is not in the mapping. Then assume 
that j,, jz,. . . , j, are the children of T[ j]. The 
best mapping must map S[I..i] to one of the 
subtrees rooted at T[ j]‘s children. Suppose that 
S[l..i] is mapped to the subtree rooted at T[j,l. 
Then the distance is the sum of the cost of 
mapping S[l..i] to T[I( j,).. jtl, the cost of map- 
ping null to T[j] and the costs of inserting all the 
other subtrees of T[ j]. Therefore, 

dist(i, j) =dist(i, j,) +d(O, j) 

I-1 
+ C dist(0, j;) + 5 dist(0, j;). 

i=l i-r+1 

By Lemma 4, d&(0, j> = d(0, j> + CF= ,dist(O, ji). 
So dist(i, j) = dist(i, j,> + dist(0, j> - dist(0, j,>. 
Hence we have the following: 

dist(i, j) =disr(O, j) 

+ $:{dist(i, j,) -d&(0, j,)). 

(3) (Figure 1.) S[i] and 7’[jl are both in the 
best mapping. Then they must map to each other, 
by the ancestor-descendant constraints on map- 
pings. In this case S[l..i - 11 must mapped to a 
subtree rooted at a child of T[ j]. Suppose that it 

is mapped to subtree T] j,l, then 

dist(i, j) 

=d(i, j) +dist(i- 1, j,) 

l-1 
+ C dist(0, j;) + t dist(0, ji) 

i=l i=r+l 

=d(i, j) +dist(i- 1, j,) +dist(O, j) 

- dist(0, j,) - d( 0, j). 

Therefore we have the following: 

di.st(i, j) = d(i, j) + dist(0, j) - d(0, j) 

+ +:{dist(i- 1, j,) -d&(0, j,)} 

The lemma follows by combining the above 
three formulas. q 
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We are now ready to give our algorithm. 

dist(0, 0) = 0; 
For i = 1 to n 

dist(i, 0) = d(i - 1, 0) + d(i, 0); 
For j = 1 to m 

(*T[j] has k>Ochildren ji,...,jk *> 
dist(0, j) = d(0, j) + Cf= ,dist(O, j,) 

For i = 1 to n 
For j = 1 to m 

if I(j) = j then (* T[ j] has no child *> 

I 

dist(i- 1, j) +d(i, 0) 

dist(i, j) = min dist(i, 0) + d(0, j) 

dist(i - 1, 0) +d(i, j) 

else (* T[j] has k>l children j,,...,j, *> 

fdist(i- 1, j) +d(i, 0), 

dist(0, j) 

+ n-&(dist(i, j,) 

dist(i, j) = mint -dist(O, j,)}, 

d(i, j) +dist(O, j) -d(O, j) 

+ y& {dist(i - 1, j,) 

\ -dist(O, j,)} 

Theorem 7. The algorithm correctly calculates the 
distance between S and T in O( I S I . I T I) time. 

Proof. Correctness is immediate from Lemmas 

4-6. 
Consider the time complexity. TO compute 

dist(i, j), the time is bounded by O(degree(T[ jl>>. 
Therefore, the time of the algorithm is bounded 

by 

IS1 ITI 

c c O( dwee(T[jl) + 1) 
i-1 j=l 

ITI 

c O(degree(T[j])) 
j=l 

=O( ISI. ITI). 0 
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Fig. 1. If S[i] maps to T[j], and S[l..i - l] maps to subtree rooted at T[j,]. The cost of such a mapping includes the cost of 

inserting all subtrees of T[ j] aside from T[j,]. 
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Fig. 2. Trees constructed from instance of exact 3-cover. 
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Strings are trees with a single leaf. Consider 
the problem of comparing an unordered tree with 
k leaves to a general unordered tree. Let us first 
consider the case where k = 2. That is, there are 
two leaves in T, and an arbitrary tree T2. Let i,, 
be the node in T, with two children. Let its two 
children be i, and i,. We can use the string-to- 
tree algorithm to compute the distance of the 
subtrees rooted at those children to tree T,. To 
compute the distance from T,[l(i,,)..i,,] to 
T,[!(j)..j], one must compute the forest to forest 
distance dist(l(i,,)..ij, l(j)..j - 1). 

There are two subcases pertaining to the calcu- 
lation of that term. 

(1) Only one string is in the best mapping. 

dist(l(i,,)..i,, f(j)..j- 1) 

= min{dist(i,, l(j)..j- 1) +dist(i,, 0), 

dist(i,, I( j)..j - 1) +dist(i,, 0)). 

(2) Suppose both strings are in the best map- 
ping. 

If the two strings map to one subtree, then 

dist(l(i,,)..iz, /( j)..j - 1) 

=dist(O, j) -d(O, j) 

+ r&{dist(l(iil)..i2, j,) -dist(O, j,)}. 

If each string maps to a different tree, then we 
use bipartite matching to find the best map- 
ping. 
From the above discussion, if we know all 

disr(l(i,,)..i2, I( j>..j - l>, where 1 <j < I T2 I, then 
we can proceed as in the string-to-tree algorithm. 
For fixed j, to compute dist(l(i,,)..i,, I(j).. j - l>, 
we need 

2 +degree(T,[ j]) + 2!.3. (degree(T,[ j]) + 1) 

= 0(2!. 3 . degree( T,[ j])) 

We construct two trees as in Fig. 2. The top 
portion of each tree is represented by a triangle. 
Below the triangle are II subtrees for each tree. 
We use the triangle at the top to connect the n 
subtrees into a tree. It has ceiling of log,(n) 
levels. It plays no further role in the construction. 
The total number of nodes in the triangle is less 
than n. We assume that all the nodes in the 
triangle have the same label, which may be arbi- 
trary. We call a sequence of nodes with label 4, 
A, s, or t,, a segment. The length of each segment 
is f&n> = 4~. 

time. The most expensive step is for bipartite Inspection of the figure shows that T, and T2 

matching, namely 2!. 3 . (degree(T,[ jl> + 1). can be constructed from an instance of exact 
Therefore, the total time for dist(l(i,,)..iz, I(j).. j>, cover by 3-sets in polynomial time. 
where 1 <j < 1 T2 1, is CT; ,2!. 3 . degree(ir,[ jl> = In the following we will assume that each edit 
2!. 3. I T2 I. Hence the time complexity of a two- operation has unit cost, i.e. ~(a + b) = 1 for all 
leaf tree to a general tree is O( I T, I . 1 T, I t-2!. a,h such that a # h, and that T, and T2 are trees 

3 . I T2 I ). as in Fig. 2. 

If T, has k leaves, we have to consider the 
case where we have a subforest in that tree. The 
subforest consists of trees each of which has less 
than k leaves. There are at most 3k such forests. 
Extending the matching techniques to groups of 
forests, we use bipartite matching to determine 
which group in T, maps to which different tree in 
T,. The resulting complexity is 

O(IT, I.IT21+k!.3’ 

.(k”+degree(T2)‘).lT21). 

4. NP-completeness 

In this section we show that the problem of 
computing the editing distance between un- 
ordered labeled fixed-degree k > 2 tree is NP- 
complete. For details of this section, we refer to 

[5,71. 
We will reduce Exact Cover by 3-Sets [l] to 

computing unordered labeled tree editing dis- 
tance. Given an instance of the exact 3-cover 
problem, let the set S = (s,, s2,. . . , s,,), where 
m = 39. Let T = {C,, C,, . . . , C,,}. Here each C, = 
(t,,, t,,, t,,}, where t,, E S. Without loss of general- 
ity, we assume that n > 4. 
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Lemma 8. Let A4 be a mapping between T, and T2, 
if there are d >, 0 nodes of T2 not in mapping M, 
then r(A4)(Tl, T2) 2 3(n - k)f,(n) + k(f,(n) - 1) 
+ d. 

Lemma 9. If there is an exact col’er by 3-set, then 
6(T,, T2) < 3(n - k>f&n> + k( f&n> - 1) + f&n>. 

Lemma 10. Zf 6(T,, T2) < 3(n - k)f,(n) + 
k( f,(n) - 1) + f,(n), then there is an exact couer 
by 3-set. 

Theorem 11. Computing the editing distance be- 
tween unordered labeled degree three trees is NP- 
complete. 

For the editing distance between degree k > 3 
trees, we can reduce the Exact Cover by k-sets to 
it. However, for degree two trees we cannot use 
the Exact Cover by 2-sets problem since it is in P. 
We can still use exact cover by 3-sets with a 
minor modification of the trees in Fig. 2. For any 
node with out-degree 3, let the node be a and its 
children be b, c, and d, that is (a(b)(c)(d)). We 
change it to two out-degree 2 nodes, namely 
(a(b)(a(c)(d))). Now if we replace f,(n) = 4n in 
Lemmas 8-10 by f2(n) = 6n, we can prove the 
same results as in Lemmas 8-10 and Theorem 
11. For the problem of computing the editing 
distance between a degree d, 2 2 tree and a 

degree d, 2 2 tree, we can similarly prove that it 
is NP-complete [7]. 

The previous results are based on the assump- 
tion that the size of the alphabet of the labels are 
not bounded. However, in applications the size of 
the alphabet is always a constant. When we fix 
the size of the alphabet, we can use different 
strings to encode different symbols. Therefore, 
even if the size of the alphabet is two all the 
previous results are still true [71. 
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