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A b s t r a c t .  This paper considers the.problem of computing a new editing 
based distance between unordered labeled trees. The problem of approximate 
unordered tree matching is also considered. We present algorithms solving 
these problems in sequential time O([TI[ • IT2[ • max{deg(T1), deg(T2)} • 
log S (max { deg(T1 ), deg (T2) })). Our previous result shows that computing the 
editing distance between unordered labeled trees is NP-complete. 

1 I n t r o d u c t i o n  

Unordered labeled trees are trees whose nodes are labeled and in which only ancestor 
relationships are significant (the left-to-right order among siblings is not significant). 
Such trees arise naturally in genealogical studies, for example, the genetic study of 
the tracking of diseases. For many such applications, it would be useful to compare 
unordered labeled trees by some meaningful distance metric. The editing distance 
metric, used with some success for ordered labeled trees [4], is a natural such metric. 

In section 2 we review the previous NP-completeness results on editing distance 
between unordered trees. In section 3 we introduce the new distance metric between 
trees, which we call constrained editing distance. In section 4 we will investigate 
the properties of the new distance metric. In section 5 we present an algorithm 
to compute the new distance metric and analyse the complexity. In section 6 we 
consider the approximate unordered tree matching problem. 

2 P r e l i m i n a r i e s  

In this section we will first introduce some basic definitions and then review the 
previous results on unordered trees. Unless otherwise stated, all trees we consider in 
the paper are rooted,  labeled, and unordered.  

* Research supported by the Natural Sciences and Engineering Research Council of Canada 
under Grant No. OGP0046373. 
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2.1 Edi t ing  Operat ions  

We consider three kinds of operations. Changing a node n means changing the label 
on n. Deleting a node n means making the children of n become the children of 
the parent of n and then removing n. Inserting is the complement of deleting. This 
means that inserting n as the child of m will make n the parent of a subset (as 
opposed to a consecutive subsequence [11]) of the current children of m. 

Following [5, 11, 12], we represent an edit operation as a ~ b, where a is either 
or a label of a node in tree T1 and b is either $ or a label of a node in tree T2. We 

call a ~ b a change operation if a ~ )~ and b ~ ~; a delete operation if b = )~; and 
an insert operation if a = )~. 

Let S be a sequence sl,  ..., Sk of edit operations. An S-derivation from tree A to 
tree B is a sequence of trees A0, ...,Ak such that  A = A0, B = Ak, and Ai-1 --+ Ai 
via si for 1 < i < k. Let 7 be a cost function which assigns to each edit operation 
a ~ b a nonnegative real number 7(a -+ b). 

We constrain 7 to be a distance metric. Tha t  is, i) 7(a --~ b) _> 0, 3~(a ~ a) = 0; 
ii) 7(a --~ b) = 7(b --~ a); and iii) 7(a --* c) < 7(a --+ b) -t- 7(b --+ e). 

We extend 7 to the sequence of editing operations S by letting 7(S) = ~lSl  7(s~). i=1 

2.2 Edi t ing  Dis tance  and Edit ing Dis tance  Mapping  

The results in this subsection are from [12]. We will omit the proofs. 

Edit ing  D i s t a n c e .  [12] defined the editing distance between two trees by consid- 
ering the minimum cost editing operations sequence that  transforms one tree to the 
other. Formally the distance between T1 and T2 is defined as: 

D~(T1,T2) = n~n {7($) I S is an edit operation sequence taking T1 to T2}. 

Edit ing  Dis tance  Mappings .  The edit operations give rise to a mapping which 
is a graphical specification of what edit operations apply to each node in the two 
unordered labeled trees. 

Suppose that  we have a numbering for each tree. Let t[i] be the ith node of 
tree T in the given numbering. Formally we define a triple (Me, T1, T2) to be an 
editing distance mapping from T1 to T2, where Me is any set of pair of integers (i, j )  
satisfying: 

(1) l<i<]Tll, l<j<_lT2]; 
(2) For any pair of ( i l , j l )  and (i2,j2) in Mr, 

(a) il = i2 iff j l  = j2 (one-to-one) 
(b) tl[il] is an ancestor of tl[i2] ifr t2[j~] is an ancestor of t2[j~] (ancestor order  

preserved) 

We will use Mr instead of (M~,T1,T~) if there is no confusion. Let Mr be an 
editing distance mapping from T1 to T2. Then we can define the cost of Me: 

7(Me) = E 7(t1[i] "--* t2[j])+ E 7(Q[i] --+ )t)+ E 7(~ ---+ t2[j]) 
(i,j)6M~ i~_M~ jffM~ 

The relation between an editing distance mapping and a sequence of editing 
operations is as follows: 
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L e m m a l .  Given S, a sequence s l , . . . , s k  of edit operations from T1 to T2, there 
exists a editing distance mapping Me from T1 to T2 such that 7(Me) < 7(S). Con- 
versely, for any mapping Me, there exists a sequence of editing operations such that 
7(S) = 7(Me). 

Based on the lemma, the following theorem states the relation between the editing 
distance and the editing distance mappings. This is why we call this kind mapping 
editing distance mapping. 

T h e o r e m 2 .  De(T1,T2) = n~n{7(Me) l Me is a mapping from T1 to T2} 

One of the results in [12] is that  finding D~(T1, T2) is NP-complete even if the 
trees are binary trees with a label alphabet of size two. Kilpelainen and Mannila [2] 
showed that  even the inclusion problem for unordered trees is NP-complete. In fact 
we recently proved a stronger result that  the problem of finding the minimum cost 
mapping (edit distance) between two unordered trees and the problem of finding 
the largest common subtree of two unordered trees are both MAX SNP-hard which 
means that  there is no polynomial time approximation scheme (PTAS) for these 
problems unless P=NP. Since unordered trees are important in some applications, 
one would like to find distances that  can be efficiently computed. 

3 A N e w  E d i t i n g  b a s e d  D i s t a n c e  M e t r i c  b e t w e e n  U n o r d e r e d  

T r e e s  

Our new distance metric is based on a restriction of the mappings allowed between 
two trees. The intuitive idea is that  two separate subtrees of T1 should be mapped 
to two separate subtrees in T2. This idea was proposed by Tanaka and Tanaka [7] in 
their definition for a structure preserving mapping between two ordered labeled trees 
although the definition in [7] dose not capture the idea precisely. Tanaka and Tanaka 
[7] also showed that  in some applications (e.g., classification tree comparison) the 
structural preserving mapping is more meaningful than editing distance mapping. 
We refined the definition for ordered trees [10] and in this paper extend the definition 
from ordered trees to unordered trees 

3.1 New M a p p i n g s  

Suppose again that  we have a numbering for each tree. Let t[i] be the ith node of 
tree T in the given numbering. Let T[i] be the subtree rooted at t[i] and F[i] be the 
unordered forest obtained by deleting t[i] from Till. 

Formally we define a triple (M, T1, T2) to be a mapping from T1 to T2, where M 
is any set of pairs of integers (i, j)  satisfying: 

(1) l < _ i < l T l [ , l < j < l T 2 1 ;  
(2) For any pair of (il, jl) and (i2, j2) in Me, 

(a) il = i2 iff j l  = j2 (one-to-one) 
(b) t~[ill is an ancestor of t1[i2] iff t2[j~] is an ancestor of t2[j2] (ancestor order 

preserved); 
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(3) For any triple ( i l , j l ) ,  (ie,je) and (i3,j3) in M, let h[I] be the lca(tl[iJ,tl[i2]) 
and te[J] be the Ica(te[jJ, te[je]), where Ica represents least common ancestor. 
h [ / ]  is not an ancestor or a descendant of h[i3] iff te[J] is not an ancestor or a 
descendant of te[j3]. 

We will use M instead of (M, T1, Te) if there is no confusion. Let M be a mapping 
from T1 to Te. Then we can similarly define the cost of M: 

7(M) = E 7(tl[i] ---+ t213']) + E 7(t1[i] ---+ A) + E 7(A --+ te[j]) 
(i,j)EM i~.M jf[M 

Mappings can be composed. Let M1 be a mapping from T1 to T e  and Me be a 
mapping from Te to T3. Define 

M1 o M2 = {( i , j )  ] 3k s.t. (i, k) 6 MI and (k, j)  E Me}. 

L e m m a  3. 1) M1 o M2 is a mapping between T1 and 7"3. 2) 7(M1 o Mu) < 7(M1 ) + 
7(M:~). 

P r o o f i  (1) follows from the definition of mapping. Let us check condition (3) only. 
Let (i1,Jl) ,  (i~,je) and (i3, j3) be in M1 oM2. By the definition of M1 oM2, there are 
kl, k2 and k3 such that (il ,kl),  ( i2,kJ and (i3, k3) are in M1 and (k l , j l ) ,  (ke,je) 
and (k3, j3) are in M~. Let I be the Ica(il, i2), K be the lca(kl, ke) and J be tile 
lca(jl, je). By the definition of M1 and M2, I is not an ancestor or descendant of 
i3 iff K is not an ancestor or descendant of k3. Moreover K is not an ancestor or 
descendant of k3 :iT J is not an ancestor or descendant of j3. Therefore I is not an 
ancestor or descendant of i3 iff J is not an ancestor or descendant of j3. 

(2) Let M1 be the mapping from T1 to Te. Let M2 be the mapping from T2 to 
T3. Let M1 o M2 be the composed mapping from T1 to T3 and let I and J be the 
corresponding deletion and insertion sets: Three general situations occur. (i, j) 6 
M1 o Me, i ~ M1, or j ~ Me. In each case this corresponds to an editing operation 
7(x ~ y) where x and y may be nodes or may be A. In all such cases, the triangle 
inequality on the distance metric 7 ensures that  7(x --+ y) < 7(x ~ z) + 7(z -+ y). 
[] 

3.2 A N e w  Edit ing Based Distance  be tween  Trees  

We can now define a dissimilarity measure between T1 and T2 as: 

D(T1, Te) = n~n{7(M) ] M  is a mapping f rom T1 to T2} 

In fact this dissimilarity measure is a distance metric. 

T h e o r e m  4. 1) D(T, T) = O; 
2) D(T1,Te) : D(Te,T1); 
3) D(T1, T3) < D(T1, T2) + D(T2, T3). 
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Proof :  1) and 2) follow directly from the definition of the mapping. For 3), consider 
the minimum cost mappings M1 between T1 and T2 and M2 between T2 and T3. It 
is easy to see the following: 

D(T~,T3) < 7(M1 o M2) < ")'(M1) 4- 7(M2) = D(Tx,T2) + D(T2,T3). 

[] 

The relation between our new distance metric D and the editing distance metric 
De is: D~(TI,T~) < D(Tx,T2). The reason is that  any new mapping we defined is 
always a editing distance mapping. 

4 P r o p e r t i e s  o f  t h e  N e w  D i s t a n c e  

In this section we will present several lemmas which will be the basis for the algorithm 
in the next section. 

L e m m a  5. Let tl [ia], tl [i2], ...tt[in,] be the children oft t  [i] and t2 [jl], t2[j2], ...t2[jnj] 
be the children oft2[j], then D(O, O) -- O; 
D(F1 [i], 0) n, = ~-~k=l D(Tt[ik], 0); D(Tt[i], O) = D(FI[i], O) + 7(Q[i] ~ A); 
D(O, F2 [j]) nj = Y]~k=l D(O, T2[j~:]); D(O, T2[j]) = O(O, F2[j]) 4- 7(A ~ t2[j]). 

L e m m a  6. Let t1[i1], t1[i2], ...tl[im] be the children of tt [i] and t2[jl], t2~J21, ...t2~jnj] 
be the children of t2~], then 

D(T1 [i1, 0) 4- minl<_,<_n, {D(T1 [i8], T2[j]) - D(T1 lie], 0)} 
D(T1 [i], T2[j]) = min D(O, T2 [j]) 4- minl<t_.nj {D(T1 [i], T2[jt]) - D(O, T2 [j,])} 

D(FI[i], F2[j]) + 7(t1[i] --+ t2[j]) 

P roof :  Consider the minimum-cost mapping M between Tl[i] and T2[j]. There are 
four cases:(1) i ~ M a n d j ~ M , ( 2 ) i ~ M a n d j e M , ( 3 ) i e M a n d j e M , ( 4 )  
i f~ M and j q~ M. 

Case 1: let (i,t) in M. Since j ~ M, t m u s t  be a node in F~.[j]. Let t2[jt] be the 
child of t[j] on the path from t2[t] to t2[j]. Thus D(TI[i],T2~]) = D(TI[i],T~Ljt]) 
+D(O, T2 [jl]) 4- . ' .  + D(O, T2 l i t- l])  +D(O, T2 [j,+l]) + ... + D(O, T2 [jnj]) +7(A, t2[j]). 

n1 Since D(O, T2[j]) = 7(A,t2[j]) + ~ k = l  D(O, T2[jk]), we can rewrite the right hand 
side of the formula as D(0, T2[j]) 4- D(T1 [i], T2[jt]) - D(O, 7"2 [j,]). Since the range of 
k is from 1 to nj, we take the minimum of these corresponding costs. 

Case 2 is similar to case 1. 
Case 3: since i E M and j E M, by the condition of mapping, ( i , j )  must be in 

M. Since M - (i , j)  is a mapping between Fl[i] and F2[j], and for any mapping M'  
between FI[i] and F2[j], (i ,j) U M' is a mapping between Tl[i] and T2[j], we know 
D(T1 [i], Tu[j]) = D(F1 [i], F2[j]) 4- 3'(tl [i], t2[j]). 

Case 4 is similar to Case 3. The formula would be D(T~ [i], T2[j]) = D(F~ [i], F2[j]) 
+7(t l  [i], A) + 7(A, t2[j]). Since 7(tl  [i], t2[j]) < 7(ta [i], A) + 7(A, t2 [j]), we do not have 
to include this case in our final formula. [] 

Before we proceed to the next lemma we need the following definition. 
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Define a restr icted mapping  RM(i , j )  between F~[i] and F2~] as follows: 
1) RM(i , j ) i s  a mapping  between FI[i] and F2[j], 
2) i f ( l ,  k) is in RM(i , j )  and tt[l] is in T~[i,] and t2[k] is in T2[jt], then for any (ll,  kl)  
in RM(i, j) t l [ l l ]  is in Tl[isl if and only if t2[kl] is in T2[jt]. 

Since a restr icted mapping  is a mapping,  the cost of a restr icted mapping  is well 
defined. 

L e m m a  7. Let t l  [il], tl  [i2], ...tl[i,~,] be the children of tl[i] and t2 ~1], t2[j2],--.t2[j~j] 
be the children of t2[j], then 

{ D(FI[i], O) + minl<s<n,{D(Fl[is], F2[j]) - D(Fl[is], 0)} 
D(F~[i], F2[j]) = min D(O, F2[j]) + min~<t<,~{D(F~[i], F2[j,]) - D(O, F2[jt])} 

minuM(i,j) 7(RM(i, j)) 

Proof ."  We consider the minimum-cost  mapping  M between Fl[i] and F2[j]. There  
are four cases. 

Case 1: there is a 1 _< s < ni such tha t  if (k , l )  E M,  then tl[k] is a node in 
subtree Tl[is]; and there are (kl , /1)  and (k2,12) in M such tha t  t2[ll] is a node in 
T2[itl] and t2[/2] is a node in T2[it~], where 1 <_ tl 5s t2 < nj. Note tha t  in this case is 
cannot  be in M.  This  is similar to case 1 in L e m m a  6, and hence we have following 
formula:  D(F1 [i], F2[j]) = D(F1 [i], 0)+ mina<s<~, D(F1 [is], F2[j]) - D(FI [is], 0). 

Case 2: there is a 1 < t < nj such tha t  if (k , l )  C M,  then t2[l] is a node in 
subtree T2[it]; and there are (kl,ll) and (k2,12)in M such tha t  t l [kl]  is a node in 
T2[is,] and tl[k2] is a node in T2[is~], where 1 < sl 7 s s2 <_ nl. This  is similar to case 
1. 

Case 3: there are s and t such tha t  if (k, l) e M then tl[k] is node in Tx[is] 
and t2[l] is node in T2[it]. In this case M is a restr icted mapping  and therefore 
D(F1 [i], F2[j]) = minRM(i.j) 7(RM(i, j)). 

Case 4: there are (kl ,  ll),  (k2, 12), (xl, Yl), (x2, y2) in M such tha t  tl[kt] is a node 
in Tl[isl], tl[k2] is a node in Tl[is~], t~[yl] is a node in T2[it,], and t2[y2] is a node 
in T2[it~], where 1 <_ Sl # s2 <_ ni and 1 _< t l r  t2 _< nj .  We will show tha t  in this 
case the mapping  M is a restricted mapp.ing between Ft [i] and F2 [j]. 

Suppose this is not  true. Then,  w.l.o.g., we assume tha t  there are ( a l , b l )  and 
(a2, b~) in M such tha t  tl[ax] and tl[a2] belong to the same subtree and t2[bx] and 
t2[b2] belong to different subtrees. Let (aa, b3) E M such tha t  tx[a3] and t l [a l ]  belong 
to different subtrees of FI[i]. Now consider lca(tl [a~], t l  [a2]) and t 1 [a3]. Since t~ [al] 
and tl[a2] belong to the same subtree which is different f rom the subtree tl[a3] be- 
longs to, we know tha t  lca(tl [al], t l  [a2]) and t l  Ida] are  not  in ancestor or descendant  
relationship. However if we consider lca(t2[b~], t~[b2]) and t2[b3], it is easy to see tha t  
lea(t2[bl],t2[b2]) = t2[j] which is an ancestor of t2[ba]. This  means  tha t  M is not  a 
valid mapping.  Contradict ion.  [] 

From lemma 7, in order to compute  D(FI[i], F2[j]), minRM(i,j)7(RM(i, j)) have 
to be computed  first. The  next  two lemmas will establish the relat ionship between 
minRM(i,j)7(RM(i,j)) and D(Tl[is],T2[jt]), where 1 < s < ni and 1 _< nj. We need  
the following definition in the next  two lemmas.  

Given I = {il,i2, ...in,} and J = { j l , j 2 ,  ...j,~j}, We define a par t ia l  funct ion 
between I and J PF(i, j) as follows: 
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1) PF(i,j) is a set of pairs (s , t)  such that  1 < s < ni and 1 < t < nj,  
2) let (s,t) and (xly) be in Pf( i , j ) ,  s = x if and only i f t  = y .  
The cost of a partial function, gamma( F P( i, j)) ,  is defined as follows: 
E(,,t)ePF(ij) D(TI [i,], T2[jt]) + E~r D(T1 [i,], O) + Etr T2 [jt]). 

L e m m a  8. minRM(i,j) 7(RM(i, j)) = minpr(i,j) 7(PF(i, j)) 

Proof." Given a restricted mapping RM(i, j), we define a partial function PF(i, j) 
as follows. 

Pr(i , j )  = {(s,t)l there is (k,l) in RM s.t. tl[k] (t2[/]) is a node in Tl[is] (T2[jt])} 

By the definition of restricted mapping this is indeed a partial function. Furthermore 
it is easy to see that  7(PF(i, j)) < 7(RM(i, j)). 

On the other hand, given a partial function PF(i, j), we can construct a restricted 
mapping RM(i, j) as follows. 

i]lthere exists (s,t) E PF(i,j) s.t. (k,l) is in } RM(i,j) = (k,.J,the minimum cost mapping between Tx[i~] and T2~t] 

It is clear that this is a restricted mapping. Therefore 7(RM(i, j)) < 7(PF(i, j)). 
Hence minRM(ij) 7(RM(i, j ) )  = minpF(i,j) 7(PF(i, j)). [] 
In fact we can add one more condition in the definition of partial function, 

namely IPF(i,j)l = min{ni, nj}. The reason is that  if IPF(i,j)l < min{ni, nj} then 
there are s and t such that  s • RE(i, j) and t f~ PF(i, j). Because D is a distance 
metric, D(T~ [i8], T~[jt]) _< D(T1 [i8], O)+D(O, 7'2 [Jt]). Therefore 7(PF'(i, j )  = {(s, t)U 
PF(i, j )})  _< 7(RE(i, j)). 

Combining lemma 7, 8 and the above observation, we have proved the following 
lemma. 

L e m m a 9 .  Let tt[il],tl[i2], ...q[i,,] be the children oftl[i] and t2[Jtl,t2~2], ...t2[Jn,l 
be the children of t2[j], then 

{ D(F~[i], O) + min D(F~[i,], F2[j]) - D(FI[i,], O) 
l<s<ni 

D(FI[i], F2[j]) = min D(O, F~[j]) + min D(FI[i], F2~t]) - D(O, F2~t]) 
l<_t<_nj 

min 7(PF(i,j)) 
JPF(i,j)l=min{ni,nj} 

5 A l g o r i t h m  a n d  C o m p l e x i t y  

We first consider how to compute min 7(PF(i,j)) and then present 
IPF(i,j)l=min{ni,ni} 

our simple algorithm. 
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5.1 Algorithm 
From the definition of P F ( i , j )  and 7 ( P F ( i , j ) ) ,  it is clear that  this problem is 
related to the minimum cost bipartite matching problem. If ni = nj,  then this is 
exactly the minimum cost bipartite matching problem. If ni ?6 nj,  then we have 
to consider those extra trees in one of the forests. Suppose that  ni > nj.  One way 
to solve this problem is to add ni - nj empty trees to F[j] and then use bipartite 
matching. However this will result in redundant computation.  We will reduce this 
problem directly to the minimum cost maximum flow problem by adding only one 
empty tree to F[j]. 

Given FI[i] and F2[j], w.l.o.g., we assume that ni > nj. Let I = {il, i2, ...in,} and 
J = {Jl , j2 ,  . . . jn,}, where ik, 1 < k < ni, represents tree T~[ik], and jz, 1 < l < nj,  
represents tree T~[jl]. 

We construct a graph G = (V, E)  as follows: 

vertex set: V = {s, t, e} U I U J,  where s is the source, t is the sink and e 
represents an empty tree; 
edge set: [s, ik], [jl, t], [e, t] with cost zero, [ik, jl] with cost D(T1 [ik], T2[jt]), 
and [ik, e] with cost D(T1 [ik], 0). All the edges have capacity one except [e, t] 
whose capacity is ni - nj.  

G is a network with integer capacities, nonnegative costs, and the maximum flow 
f* = ni = max{nl, nj }, see figure 1. 

i 

i~.. 1, D(T,[i~], T2[jd) 

10  

1,0 

l,  D(rt [h], 0) 

Fig. 1. Reduction to the minimum cost flow problem. 

Now let us examine the meaning of 7 ( P F ( i ,  j)) .  It is easy to see that given a 
P F ( i ,  j ) ,  7 ( P F ( i ,  j ))  represents the cost of the following maximum flow on G: for 
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any (k, l) e PF(i ,  j) the flow on edge [ik, jz] is one; for any k ~ PF(i ,  j) the flow on 
edge [ik, e] is one; the flow on edge Is, ik] and edge [Jz, t] are one; the flow on edge 
[e, t] is ni - n j; and all the flows on the other edges are zero. 

Therefore min 7(PF(i,  j)) is exactly the cost of the minimum cost 
IPF(i , j ) l=min{ni ,nj}  

maximum flow of G. Hence we can use minimum cost maximum flow algorithm to 
compute min 7(PF(i,  j)). 

IPF(i , j  ) l=min{ni,nj} 
We are now ready to give our algorithm. 

Input: T1 and T2 
Output: D(T~[i],T2[j]), where 1 < i < IT~I ~nd 1 < j  <_ I%1 

D(#, O) = 0; 
for  i = 1 to  ITal 

ni D(Fl[i], 8) = Ek=~ D(T1 [ik], 8) 
D(T1 [i], 8) = D(Fi [i], 8) + ~/'(~1 [i] ~ )t) 

for j = 1 to IT~I 
n j  D(O, F2b']) = Ek :~  D(O, T2[jk]) 

D(O,T2[j]) = D(O, F2[j]) + 7(X -- t2[j]) 

for i = 1 to IT~I 
for j = 1 to IT21 

( 

D(F~[i], F2[j]) = mln 

( 

D(FI[i],O) + min {D(F~[i,],F2[j]) - D(FI[i~],O)} 
1<_~<,',i 

D(O, F2[j]) + min {D(Fa[i], F2[j,]) - D(O, F2[jt])} 
l<t_<ns 

IPF( i ,j ) I =miI~n {hi ,nj }7( P F( i, j ) ) 

D(T~ [i], T2 [j]) = min { 
D(T1 [i], 0) + mini <_s<n, {D(TI [i~], T2 [j]) - D(T~ [i~], 0)} 
D(O, T2 [j]) + minl<t<nj {D(T1 [i], T2 [fl]) - D(O, T2 [it])} 
D(FI[i], F2[j]) + 7(ta[i] ~ t213"]) 

5.2 C o m p l e x i t y  

The complexity of computing D(T1 [i], 712[/]) is, by lemma 6, bounded by O(ni + nj). 
The complexity of computing D(Fi [i], F2[j]) is bounded by the O(ni + nj) plus the 
complexity of the minimum cost maximum flow computation. 

Our graph is a graph with integer capacities, nonnegative edge costs, and max- 
imum flow f* = max{hi, nj}. The complexity of finding minimum cost maximum 
flow for such a graph with n vertices and m edges is O(mlf* Ilog(2+m/n )n) < 
O(mlf*llog2n ) [6]. For our graph, n = ni + nj + 3 and m = ni * nj + 2ni + nj; 
therefore the complexity is bounded by O(ni * nj * max{n/, nj } �9 log2(max{ni , nj })). 

Hence for any pair i and j ,  the complexity of computing D(TI[i], T~[j]) and 
D( F1 [i], F2[j]) is bounded by O(ni * nj * max{ni, nj } �9 log2(max {nl , nj })). Therefore 
the complexity of our algorithm is 

ITll IT~I 

~ O(n, • n~ • m a x { n , ,  nj.} • log2(maz{n,,n~})) 
i=1  j = l  
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ITd IT21 

<- E E O(n, x nj x maxldeg(T1), deg(T2)} x log~(mazldeg(T1), deg(T2)})) 
4=1 j = l  

ITll IT21 
< O(max{deg(T1), deg(T2)} x log2(max{deg(T1), deg(T2)}) x E n4 x E nj) 

4=1 j=l 

< O(IT1 ] x ]T~] x max{deg(T1), deg(T2)} x log2(max{deg(T1) , deg(T2)})) 

6 A p p r o x i m a t e  U n o r d e r e d  T r e e  M a t c h i n g  

Approximate unordered tree matching is a natural extension of approximate string 
matching [3, 8, 1] and approximate ordered tree matching [11, 13]. We omit details 
in this section. 

In this section, we use D[i] to represent subtree rooted at d[i] and use D/[i] to 
represent the forest obtained by removing d[i] from D[i]. 

We first define the operation of removing at a node. 
Removing at node d[i] means removing the subtree rooted at d[i]. 

Define a subtree set S(D) as follows: S(D) is a set of numbers satisfying: 

(1) i �9 S(D) implies that 1 < i < IDI 
(2) i, j �9 S(D) implies that neither is an ancestor of the other. 

Define R(D, S(D)) to be the tree D with removing at all nodes in S(D). 
Now we can give the definition of approximate unordered tree matching. Given 

tree D and P,  for each i, we want to compute 

D~(D[i], P) = mins{D(R(D[i], S(D[i])), P). 

The minimum here is over all possible subtree sets S(D[i]). 
In the following we give an algorithm for approximate unordered tree matching 

with time complexity O(IP I x IDI x deg(P) x log2(max{deg(P),deg(D)})). The 
algorithm needs a subroutine to compute pF(ij)%(PF(i,j)).min We can similarly reduce 

this problem to the minimum cost flow problem. However we have to modify the 
definition of the cost of a partial function: 

7,(PF(i,j)) = E D,(D[i~],P[jt]) + E D,(O,P[i~]). 
(s,t)E PF( i , j )  s r 
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Input: D and P 
Output: D,.(D[i],P), where 1 < i < IDI 

D(8, 0) = O; 
for i = 1 to IDI 

D r ( D d i ] ,  O) = o 
D,.(D[i], O) = 0 

for j = 1 to [PI 
nj  D,(O, P/[j]) = ~ k = l  D~(0, Pb'k]) 

Dr(0, P[J]) = D,.(O, Pf b']) + 7(), ---, p[j]) 

for i = a to IDI 
for j = 1 to IPI 

{ lmi<~ D~(Dy[i~], el[j]) + 7(d[is] ~ A) 

D,-(DI[i], PI[J]) = min /)T(O, P/[3:]) + l~tinjD,-(Dl[i], Pl[Jt]) - Dr(O, Pl[Jt]) 
min 7r(PF(i,j); 

Pf(i,j) 

{ or(o, P[j]) 
D,.(D[i], P[j])  = min 7(d[i] ~ A) + mina<,<n, D~.(D[i~], P[j])  

D,.(O, P[j])  + minx<t<nj D,.(D[i], P[jt])  - Dr(O, P[je]) 
D,-(Dy[i], P/[ j ] )  + 7(d[i] --* p[j]) 

7 Conclusion 

Motivated by the NP-complete results in [2, 12], we have defined a constrained edit- 
ing distance metric between unordered labeled trees. We present an algorithm for 
computing this distance metric based on a reduction to the min imum cost maxi- 
m u m  flow problem. Our algorithm is generalizable with the same complexity to the 
approximate  unordered tree matching problem. 

The work presented is part  of a project to develop a comprehensive tool for 
approximate  tree pat tern matching [9]. The proposed algorithms and their imple- 
mentat ion will be integrated into this tool. 
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