
Fight Night in Literate Python
Grant Jenks
June 18, 2019

Let’s get ready to rummmble!!!

The Zen of
Python
by Tim Peters

>>> import this

Simple is better than
complex.

Complex is better than
complicated.

● What’s the difference between complex and complicated?
● Look up in Webster: blah blah blah, see complex; blah blah blah, see

complicated.

Donald Knuth

★ “Isaac Newton” of Computer Science

★ “The Art of Computer Programming”

★ Professor Emeritus at Stanford University

★ Popularized Big-O Notation

★ TeX Computer Typesetting

● Literate Programming

Douglas McIlroy

★ Head of Research Department at Bell Labs

★ “Unix Philosopher” – do one thing well.

★ “Piper of the Shell” – grep | sort | head

★ Unix tools: diff, sort, tr, join, graph, spell, speak

★ Adjunct Professor at Dartmouth College

● Shell Programming

Challenge

1. Read a file.
2. Parse the words.
3. Tally the frequency.
4. Print the top-10.

Solutions published in Programming Pearls magazine.
Interview-question by today’s standards.
Worthy of study in the 1980s.
There’s a lot at stake!

Knuth’s
Solution

Prefix/Radix-Tree AKA “Trie”
Optimal in Time and Space

“Literate” Programming

McIlroy’s
Solution

Multi-Process Support
Larger Than “Memory” Support

“Shell” Programming

1) tr -cs A-Za-z \n |

2) tr A-Z a-z |

3) sort |

4) uniq -c |

5) sort -rn |

6) sed ${1}q

Who won?

● How many have written a literate program? How many have written a shell
program? McIlroy won.

● Which solution is complicated? Which is complex?
● Knuth’s Solution — Complicated, irreducible complexity.
● McIlroy’s Solution — Complex, composition of simple things.
● How does Python fit in the landscape between these extremes: Literate

Programming and Shell Programming?

Docstrings!

class DocstringDemo:
"String at top of module, class, function."

def demo(self):
"Saved in __doc__ attribute."
pass

>>> DocstringDemo.demo.__doc__
'Saved in __doc__ attribute.'

Such a rare feature of programming languages! So simple and yet so useful.
Elixir, Lisp, and Python have it; everyone else re-purposes comments :(

>>> import pydoc

>>> pydoc.help(DocstringDemo.demo)
Help on function demo in module __main__:
demo(self)
 Saved in __doc__ attribute.

$ python3 -m pydoc sys

$ python3 -m pydoc -b

The hard part of pydoc.help() is mostly text formatting.
Also useful for looking at a man-page like view of a module.
Also useful for fancy browser-based documentation.

>>> import doctest
>>> def solve_linear(a, b):
 """Solve linear equation: Ax+B=0

 >>> solve_linear(2, 4)
 -2.0

 """
 return -b/a

>>> doctest.testmod()
TestResults(failed=0, attempted=1)

$ python3 -m doctest tutorial.rst

It’s a two-fer! Documentation examples (which is all people read anyway) that
becomes executable tests.

The “core developers” read Knuth
so that you don’t have to 😉

