
Python
Sorted Collections

Grant Jenks
PyCon 2016

1

Hello, [smile], I’m here today to talk
about Python sorted collections. I’m
excited and a bit nervous to be up here
in front of all you smart people. But I’m
a pretty smart guy myself and I really
admire Python so let’s get started.

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/

Python
Sordid Collections

Grant Jenks
PyCon 2016

2

Every time I talk about sorted
collections, my wife hear’s sordid. We’ll
see today how many times I can
confuse the on-site captioners. You’re
probably more familiar with sorted
collections than you realize.

A Short
Argument for
Sorted Collections

3

Let me make a short argument for
sorted collections types.

import heapq, bisect, queue
4

In the standard library we have heapq,
bisect and queue.PriorityQueue
but they don't quite fill the gap.
Behind the scenes, priority queue uses
a heap implementation.
Another common mistake is to think
that collections.OrderedDict is a
dictionary that maintains sort order but
that’s not the case.

5

I don't always import sorted types. But
when I do, I expect them in the
standard library.

TIOBE Index
6

And here’s why. Java, C++ and .NET
have them. Python has broken into the
top five of the TIOBE index but feels a
bit more like PHP or Javascript in this
regard.

Third-Party Solutions
7

We also depend on external solutions:
Sqlite in-memory indexes,
pandas.DataFrame indexes, and
Redis sorted sets. If you’ve ever issued
a “zadd” command to Redis then you
used a sorted collection.

What
are sorted
collections types?

8

So what should be the API of sorted
collection types in Python?

SortedList
class SortedList(collections.MutableSequence):

 def __init__(self, iterable=(), key=None):

 ...

 def bisect(self, value):

 ...

9

Well a SortedList should be a
MutableSequence. Pretty close to the
“list” API.
But there’s a sort order constraint that
must be satisfied by “setitem” and
“insert” methods.
Also should support a “key” argument
like the “sorted” builtin function.
Given sorted order, “bisect_right” and
“bisect_left” methods make sense.
You could also imagine an “add”

http://www.grantjenks.com/docs/sortedcontainers/sortedlist.html

method and “discard” method for
elements. Kind of like a multi-set in
other languages.
I’d also expect “getitem”, “contains”,
“count”, etc. to be faster than linear
time.

SortedDict
class SortedDict(collections.MutableMapping):

 def __init__(self, [key,] *args, **kwargs):

 …

 def bisect(self, key):

 ...

10

A sorted dictionary should be a
MutableMapping. Pretty close to the
dictionary API.
But iteration yields items in sorted
order.
Also should support efficient positional
indexing, something like a
SequenceView.

http://www.grantjenks.com/docs/sortedcontainers/sorteddict.html

SortedSet
class SortedSet(collections.MutableSet, collections.Sequence):

 def __init__(self, iterable=(), key=None):

 ...

 def bisect(self, value):

 ...

11

SortedSet should be a MutableSet.
Pretty close to the “set” API.
SortedSet should also be a Sequence
like the “tuple” API to support efficient
positional indexing.

http://www.grantjenks.com/docs/sortedcontainers/sortedset.html

12

The chorus and the refrain from core
developers is: "Look to the PyPI."
Which is good advice.

A Brief
History Of
Sorted Collections

13

So let’s talk about your options with a
bit of software archaeology.

blist
● Daniel Stutzbach; 2006 start, 2014 last PyPI update.

● blist.blist B-tree based replacement for list.

● Sorted collections based on blist.blist type.

● Full-featured, long-standing API.

15

Blist is the genesis of our story but it
wasn’t really designed for sorted
collections. It’s written in C and the
innovation here is the “blist” data type.
That’s a B-tree based replacement for
CPython’s built-in list. Sorted list,
sorted dictionary, and sorted set were
built on top of this “blist” data type and
it became the incumbent to beat. Also
noteworthy is that the API was rather
well thought out.

There were some quirks, for example:
the “pop” method returns the first
element rather than the last element in
the sorted list.

sortedcollection
● Raymond Hettinger; published on ActiveState, 2010.

● Linked from the Python Standard Library docs.

● Mostly meant for read-only workloads.

15

SortedCollection is not a package. You
can’t install this with “pip”. It’s simply a
Python recipe that Raymond Hettinger
linked from the Python docs. Couple
innovations here though: it’s simple, it’s
written in pure-Python, and maintains a
parallel list of keys. So we have
efficient support for that key-function
parameter.

● Manfred Moitzi; 2010 start, 2015 last PyPI update.

● Multiple tree implementations: Binary, AVL, Red-Black.

● API extends blist with tree traversal for slicing by value.

bintrees

16

This is bintrees. Still alive and kicking
today. A few innovations here: it’s
written with Cython support to improve
performance and has a few different
tree “backends.” You can create a
red-black or AVL tree depending on
your needs. There’s also some notion
of accessing the nodes themselves
and customizing the tree traversal to
slice by value rather than by index.

banyan
● Ami Tavory; 2013 start, 2013 last PyPI update.

● Highly optimized C++ implementation.

● Supports tree-augmentation with metadata.

17

Banyan had a very short life but adds
another couple innovations: it’s
incredibly fast and achieves that
through C++ template
meta-programming. It also has a
feature called tree-augmentation that
will let you store metadata at tree
nodes. You can use this for interval
trees if you need those.

skiplistcollections
● Jakub Stasiak; 2013 start, 2014 last PyPI update.

● Pure-Python with competitive performance.

18

Finally there’s “skiplistcollections.”
Couple significant things here: it’s
pure-Python but fast, even for large
collections, and it uses a skip-list data
type rather than a binary tree.

21

Altogether, you go on PyPI and try to
figure this out and it’s kind of like this.
It’s a mess. PyPI has really got to work
better than using Google with the site
operator.

Couple others worth calling out: rbtree
is another fast C-based
implementation. And there’s a few like
treap, splay and scapegoat that are
contributions and experiments by Dan

Stromberg. He’s also done some
interesting benchmarking of the
various tree types. There’s no silver
bullet when it comes to trees.

I love Python because there's one right
way to do things. If I just want sorted
types, what’s the right answer?

The
Missing Battery:
SortedContainers

20

I couldn’t find the right answer so I built
it. The missing battery: Sorted
Containers.

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/

21

Here it is. This is the project home
page. SortedContainers is a Python
sorted collections library with sorted
list, sorted dictionary, and sorted set
implementations. It’s pure-Python but
it’s as fast as C-extensions. It’s Python
2 and Python 3 compatible. It’s
fully-featured. And it’s extensively
tested with 100% coverage and hours
of stress.

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/

25

Performance is a feature. That means
graphs. Lot’s of them. There are 189
performance graphs in total. Let’s look
at a few of them together.
Here’s the performance of adding a
random value to a sorted list. I’m
comparing SortedContainers with other
competing implementations.
Notice the axes are log-log. So if
performance differs by major tick

marks then one is actually ten times
faster than the other.
We see here that SortedContainers is
in fact about ten times faster than blist
when it comes to adding random
values to a sorted list.
Notice also Raymond’s recipe is just a
list and that displays order n-squared
runtime complexity. That’s why it
curves upwards.

Of all the sorted collections libraries,
SortedContainers is also fastest at
initialization. We’ll look at why soon.

23

SortedContainers is not always fastest.
But notice here the performance
improves with scale. You can see it
there in blue. It starts in the middle of
the pack and has a lesser slope than
competitors.

28

Larger “load” is faster.

In short, SortedContainers is kind of
like a B-tree implementation. That
means you can configure the the
fan-out of nodes in the tree. We call
that the load parameter and there are
extensive performance graphs of three
different load parameters.

Here we see that a load factor of ten
thousand is fastest for indexing a
sorted list.

Notice the axes now go up to ten
million elements.

I’ve actually scaled SortedList all the
way to ten billion elements. It was a
really incredible experiment. I had to
rent the largest high-memory instance
available from Google Compute
Engine. That benchmark required
about 128 gigabytes of memory and
cost me about thirty dollars.

25

Smaller “load” is faster.

This is the performance of deleting a
key from a sorted dictionary. Now the
smaller load-factor is fastest. The
default load-factor is 1,000 and works
well for most scenarios. It’s a very sane
default.

26

JIT compiler

In addition to comparisons and
load-factors, I also benchmark
runtimes. Here’s CPython 2.7, CPython
3.5 and PyPy version 5. You can see
where the the just-in-time compiler, the
jit-compiler, kicks in. That’ll make
SortedContainers another ten times
faster.

32

5x faster

Finally, I made a survey in 2015 on
Github as to how people were using
sorted collections. I noticed patterns
like priority queues, mutli-sets,
nearest-neighbor algorithms, etc.

This is the priority queue workload
which spends 40% of its time adding
elements, 40% popping elements, 10%
discarding elements, and has a couple
other methods.

SortedContainers is two to ten times
faster in all of these scenarios.

Features
1 sorted_set.pop()

2 sorted_list.bisect_right(‘carol’)

3 sorted_dict.irange(‘bob’, ‘eve’)

4 sorted_dict.iloc[-5:]

5 sorted_set.islice(10, 50)

34

We also have a lot of features. The API
is nearly a drop-in replacement for the
“blist” and “rbtree” modules. But the
quirks have been fixed so the “pop”
method returns the last element rather
than the first.
Sorted lists are sorted so you can
bisect them. Looking up the index of an
element is also very fast.
Bintrees introduced methods for tree
traversal. And I’ve boiled those down to

a couple API methods. On line 3, we
see “irange”. Irange iterates all keys
from bob to eve in sorted order.
Sorted dictionaries also have a
sequence-like view called iloc. If you’re
coming from Pandas that should look
familiar. Line 4 creates a list of the five
largest keys in the dictionary.
Similar to “irange” there is an “islice”
method. Islice does positional index
slicing. In line 5 we create an iterator
over the indexes 10 through 49
inclusive.

Recipes
● ValueSortedDict - dictionary sorted by item value.

● ItemSortedDict - key, value sort order function.

● OrderedDict - insertion order with positional indexing.

● IndexableSet - supports positional indexing.

● $ pip install sortedcollections

29

One of the benefits of being
pure-Python: it’s easy to hack on. Over
the years, a few patterns have
emerged and become recipes. All of
these are available from PyPI with pip
install sortedcollections.

http://www.grantjenks.com/docs/sortedcollections/
http://www.grantjenks.com/docs/sortedcollections/

Testimonials
37

If all that didn’t convince you that
Sorted Containers is great then listen
to what other smart people say about
it:
Alex Martelli says: Good stuff! ... I like
the simple, effective implementation
idea of splitting the sorted containers
into smaller “fragments” to avoid the
O(N) insertion costs.
Jeff Knupp writes: That last part, “fast
as C-extensions,” was difficult to

believe. I would need some sort of
performance comparison to be
convinced this is true. The author
includes this in the docs. It is.
Kevin Samuel says: I’m quite amazed,
not just by the code quality (it’s
incredibly readable and has more
comment than code, wow), but the
actual amount of work you put at stuff
that is not code: documentation,
benchmarking, implementation
explanations. Even the git log is clean
and the unit tests run out of the box on
Python 2 and 3.

Under
The Hood:
SortedContainers

31

If you’re new to sorted collections, I
hope I’ve piqued your interest.
Think about the achievement here.
SortedContainers is pure-Python but
as fast as C-implementations.
Let’s look under the hood of
SortedContainers at what makes it so
fast.

bisect module
32

It really comes down to bisect for the
heavy lifting. Bisect is a module in the
standard library that implements binary
search on lists. There’s also a handy
method called insort that does a binary
search and insertion for us in one call.
There’s no magic here, it’s just
implemented in C and part of the
standard library.

List of Sublists
[# _lists

 [0, 1, 2, 3],

 [4, 5, 6],

 [7, 8, 9, 10, 11, 12],

 [13, 14, 15, 16, 17],

]
33

Here’s the basic structure. It’s just a list
of sublists. So there’s a member
variable called “lists” that points to
sublists. Each of those is maintained in
sorted order. You’ll sometimes hear me
refer to these as the top-level list and
its sublists.

There’s no need to wrap sublists in
their own objects. They are just lists.
Simple is fast and efficient.

List of Maxes
[# _lists

 [0, 1, 2, 3],

 [4, 5, 6],

 [7, 8, 9, 10, 11, 12],

 [13, 14, 15, 16, 17],

]

[# _maxes

 3,

 6,

 12,

 17,

]
42

In addition to the list of sublists.
There’s an index called the maxes
index. That simply stores the maximum
value in each sublist. Now lists in
CPython are simply arrays of pointers
so we’re not adding much overhead
with this index.

Let’s walk through testing membership
with contains. Let’s look for element
14.

Let’s also walk through adding an
element. Let’s add 5 to the sorted list.

“Jenks” Index
1 lengths = [4, 3, 6, 5]

2 pair_wise_sums1 = [7, 11]

3 pair_wise_sums2 = [18]

4 _index = [18, 7, 11, 4, 3, 6, 5]

5 _offset = 3

35

Now numeric indexing is a little more
complex. Numeric indexing uses a tree
packed densely into another list. I
haven’t seen this structure described in
textbooks or research so I’d like to call
it a “Jenks” index. But I’ll also refer to it
as the positional index.

Let’s build the positional index together
…

Positional Indexing
_index = [18,

 7, 11,

 4, 3, 6, 5]

1 @18, index = 8, position = 0

2 @11, index = 1, position = 2

3 @6, index = 1, position = 5, topindex = 2

 _offset = 3

45

Remember the positional index is a
tree stored in a list, kind of like a heap.

Let’s use this to lookup index 8.
Starting at the root, 18, compare index
to the left-child node.
8 is greater than 7 so we subtract 7
from 8 and move to the right-child
node.
Again, now at node 11, compare index
again to the left-child node.

1 is less than 6, so we simply move to
the left-child node.
We terminate at 6 because it’s a leaf
node.
Our final index is 1 and our final
position is 5. We calculate the top-level
list index as the position minus the
offset.
So our final coordinates are index 2 in
the top-level list and index 1 in the
sublist.

That’s it. Three lists maintain the
elements, the maxes index, and the
positional index. We’ve used simple
built-in types to construct complex
behavior.

Altogether that gets us to our first
performance lesson.

Builtin types are fast.

37

Builtin types are fast. Like really fast.
Builtin types are as fast as C and
benefit from years of optimizations.

SortedList.__contains__
1 def __contains__(self, val):

2 _lists = self._lists

3 pos = bisect_left(self._maxes, val)

4 idx = bisect_left(_lists[pos], val)

5 return _lists[pos][idx] == val

48

Ok, let’s look at the contains method
for a sorted list. This is the majority of
the code. We bisect the maxes index
for the sublist index. Then we bisect
the sublist for the element index.
How many lines of Python code
execute? 4.
How many instructions execute?
Hundreds of lines of C-code.
Rather than programming in Python, I
programmed against my interpreter.

That’s our next lesson.

Program in Python
your interpreter.

39

Program your interpreter. The
operations provided by the interpreter
and standard library are fast. They’re
implemented in C. When you program
your interpreter, you write C code but
in Python.

Memory is Tiered
● Registers - dozenish.

● L1 Instruction/Data Cache - 32 KB.

● L2 Cache - 256 KB.

● [L3 Cache (Shared) - 8 MB.]

● Main Memory - Gigabytes.
51

Now let’s talk about memory. This is
very simplified. My apologies to those
who feel this is grossly simplified.
Notice the limited sizes: a dozen
registers, kilobytes of L1 cache,
megabytes of L3 cache. Some
machines don’t even have an L3
cache.
So keep overhead low. Keep related
data packed together. Our sublists add
roughly one pointer per element. That’s

all. It’s 66% less memory than binary
tree implementations.

Memory Access Patterns
● Sequential

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

● Random

 10 14 13 3 5 4 12 2 6 11 8 9 7 16 15 1

● Data-dependent

 14 8 11 9 5 3 10 13 12 16 2 15 1 6 7 4

53

Also, each memory tier has different
performance. Memory slows down by a
factor of a thousand from registers to
main memory. And the advertised price
of memory lookups is often the
average random lookup time. But that’s
only one common pattern.

Sequential memory access patterns
are so fast you almost don’t pay for
them at all. The processor predicts the

memory you’ll need next and queues it
for you.

Then there’s also data-dependent
memory accesses which happen when
you follow pointers. So the next
memory location is dependent on the
current one. This is typical in binary
trees and it’s really slow. It’s as much
as ten times slower than random
memory access.

list.insert
1 for (i = n; --i >= where;)

2 items[i+1] = items[i];

3 Py_INCREF(v);

4 items[where] = v;

55

Let’s think about adding elements
again. Add calls bisect.insort which
does a binary search and then insert
on the list.

Here is the code for insert in CPython.
It is entirely sequential memory
accesses.
Also the binary search process starts
random but narrows the search range
and so improves locality of memory

accesses.

By comparison, traditional binary trees
use data-dependent memory access
as they repeatedly dereference
pointers.

We can sequentially shift a thousand
elements in memory in the time it takes
to access a couple of binary nodes
from DRAM.

 tiered.
Memory is tiered.
 tiered.
 tiered.

43

So memory is tiered. And caches are
limited in size.
This is also why the slope of the
performance curve for sorted list was
less than that for binary tree
implementations. At scale, binary trees
do more data-dependent DRAM
lookups than SortedContainers.

SortedList.__init__
1 values = sorted(iterable)

2 _lists = [values[pos:pos+load] for pos in

3 range(0, len(values), load)]

4 _maxes = [sub[-1] for sub in _lists]

58

I said that initializing a SortedContainer
is fast. Let’s look at why. Here’s the
initializer for a SortedList. Notice it
simply calls the sorted builtin and then
chops up the result into sublists and
then initializes the maxes index.

I think of this as a cheat. I’m using the
power of Timsort to initialize the
container. And it turns out initialization
is really common. The result is fast and

readable.

Also, how long does it take to initialize
already sorted data? Linear time. It’s
just a couple mem-copy like
operations.

SortedSet.add
1 def add(self, value):

2 _set, _list = self._set, self._list

3 if value not in _set:

4 _set.add(value)

5 _list.add(value)

60

Here’s another cheat. When we add an
element to a sorted set, we add it to
both a set object and sorted list. This
preserves the fast set membership
tests.

Some purists will argue that hashing
should not be necessary. They are
correct, but, if you can define
comparisons, then you can probably
define hash. Remember that we’re

solving real problems, not theoretical
ones. If you can reuse the builtin types,
then cheat and do it.

Cheat, if you can.

46

So, if you can, cheat. The way to make
things faster is to do less work. There’s
no way around that.
Another cheat I’ve mentioned regards
the positional index. If you don’t need
numerical lookups, then don’t build the
index. That’s a common scenario with
sorted dictionaries. We use less
memory and run faster.

● Punchline: O(∛n)

● Billion integers in CPython: 30 GBs.

● Timsort: comparisons are expensive.

● Memory is expensive.

● Performance at Scale: 10,000,000,000

Runtime Complexity

63

When it comes to runtime complexity,
here’s the punchline: adding random
elements has an amortized cost
proportional to the cube root of the
container size. That’s an unusual
runtime complexity but it works quite
well.
The surprising thing is that “n” stays
relatively small in practice. For
example, creating a billion integers in
CPython will take more than 30

gigabytes of memory which is already
exceeding the limits of most machines.
We’ve also seen that memory is
expensive. Allocations are costly. In the
common case, SortedContainers
allocates no more memory when
adding elements.
If you’re doubtful about performance at
scale, then I encourage you to read the
project docs. There’s a page called
Performance at Scale and it talks
extensively about theory with
benchmarks up to ten billion elements.
A little PSA before I continue: If you
claim to be fast, you’ve got to have
measurements. Measure. Measure.
Measure. Big-O notation is not a
substitute for benchmarks. Quite often,
constants and coefficients that are
ignored in theory matter quite a lot in
practice.

Measure.
Measure.
Measure.

65

So: Measure. Measure. Measure.
This whole project in fact started with a
measurement. I was timing how long it
took to add an element to a “blist”
when I noticed that “bisect.insort” was
actually faster for a list with one
thousand elements. It was so much
faster in fact, I thought “wow, I could do
two inserts in a thousand-element list
and still be faster than “blist.” That
thought eventually became the list of

sublists implementation that we have
today.

● Builtin types are fast.

● Program in Python your interpreter.

● Memory is tiered.

● Cheat, if you can.

● Measure. Measure. Measure.

SortedContainers Performance

49

So here’s the performance lessons:
Builtin types are fast.
Program your interpreter.
Memory is tiered.
Cheat, if you can.
Measure. Measure. Measure.

http://www.grantjenks.com/docs/sortedcontainers/

68

A couple closing thoughts. Everything
related to SortedContainers is under
an open-source Apache2 license.
Contributors are very welcome. We’ve
started to create a little community
around sorted collections.

I think it’s interesting to ask: is this
worth a PEP? I’m personally on the
fence. I think sorted collections would
contribute to Python’s maturity. But I

http://www.grantjenks.com/docs/sortedcontainers/
http://www.grantjenks.com/docs/sortedcontainers/

don’t know if any proposal could
survive the inevitable bike-shedding.
My contribution is a pure-Python
implementation that’s fast-enough for
most scenarios.

I’ll end with a quote from Mark
Summerfield. Mark and a couple other
authors have actually deprecated their
modules in favor of SortedContainers.
Mark says: “Python’s ‘batteries
included’ standard library seems to
have a battery missing. And the
argument that ‘we never had it before’
has worn thin. It is time that Python
offered a full range of collection
classes out of the box, including sorted
ones.”

Thanks for letting me share.

[Questions?]

